AI Article Synopsis

  • The COVID-19 pandemic has revealed significant challenges, particularly concerning life-threatening hyperinflammation known as cytokine storm syndrome (CSS).
  • Research conducted on zebrafish showed that Spike proteins from various SARS-CoV-2 variants trigger immunological responses, with some variants causing more severe hyperinflammation and associated conditions like hemorrhages.
  • Pharmacological methods to inhibit inflammation effectively reduced the adverse effects, while genetic factors influencing enzyme activity could either worsen or alleviate inflammatory responses.

Article Abstract

The coronavirus disease 2019 (COVID-19) pandemic turned the whole world upside down in a short time. One of the main challenges faced has been to understand COVID-19-associated life-threatening hyperinflammation, the so-called cytokine storm syndrome (CSS). We report here the proinflammatory role of Spike (S) proteins from different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern in zebrafish. We found that wild-type/Wuhan variant S1 (S1WT) promoted neutrophil and macrophage recruitment, local and systemic hyperinflammation, emergency myelopoiesis, and hemorrhages. In addition, S1γ was more proinflammatory S1δ was less proinflammatory than S1WT, and, notably, S1β promoted delayed and long-lasting inflammation. Pharmacological inhibition of the canonical inflammasome alleviated S1-induced inflammation and emergency myelopoiesis. In contrast, genetic inhibition of angiotensin-converting enzyme 2 strengthened the proinflammatory activity of S1, and angiotensin (1-7) fully rescued S1-induced hyperinflammation and hemorrhages. These results shed light into the mechanisms orchestrating the COVID-19-associated CSS and the host immune response to different SARS-CoV-2 S protein variants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481140PMC
http://dx.doi.org/10.1126/sciadv.abo0732DOI Listing

Publication Analysis

Top Keywords

spike proteins
8
sars-cov-2 variants
8
variants concern
8
emergency myelopoiesis
8
differential proinflammatory
4
proinflammatory activities
4
activities spike
4
proteins sars-cov-2
4
concern coronavirus
4
coronavirus disease
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!