Background: Precision oncology is one of the fastest-developing domains of personalized medicine and is one of many data-intensive fields. Policy for health information sharing that is informed by patient perspectives can help organizations align practice with patient preferences and expectations, but many patients are largely unaware of the complexities of how and why clinical health information is shared.

Objective: This paper evaluates the process of public deliberation as an approach to understanding the values and preferences of current and former patients with cancer regarding the use and sharing of health information collected in the context of precision oncology.

Methods: We conducted public deliberations with patients who had a current or former cancer diagnosis. A total of 61 participants attended 1 of 2 deliberative sessions (session 1, n=28; session 2, n=33). Study team experts led two educational plenary sessions, and trained study team members then facilitated discussions with small groups of participants. Participants completed pre- and postdeliberation surveys measuring knowledge, attitudes, and beliefs about precision oncology and data sharing. Following informational sessions, participants discussed, ranked, and deliberated two policy-related scenarios in small groups and in a plenary session. In the analysis, we evaluate our process of developing the deliberative sessions, the knowledge gained by participants during the process, and the extent to which participants reasoned with complex information to identify policy preferences.

Results: The deliberation process was rated highly by participants. Participants felt they were listened to by their group facilitator, that their opinions were respected by their group, and that the process that led to the group's decision was fair. Participants demonstrated improved knowledge of health data sharing policies between pre- and postdeliberation surveys, especially regarding the roles of physicians and health departments in health information sharing. Qualitative analysis of reasoning revealed that participants recognized complexity, made compromises, and engaged with trade-offs, considering both individual and societal perspectives related to health data sharing.

Conclusions: The deliberative approach can be valuable for soliciting the input of informed patients on complex issues such as health information sharing policy. Participants in our two public deliberations demonstrated that giving patients information about a complex topic like health data sharing and the opportunity to reason with others and discuss the information can help garner important insights into policy preferences and concerns. Data on public preferences, along with the rationale for information sharing, can help inform policy-making processes. Increasing transparency and patient engagement is critical to ensuring that data-driven health care respects patient autonomy and honors patient values and expectations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9526123PMC
http://dx.doi.org/10.2196/37793DOI Listing

Publication Analysis

Top Keywords

health sharing
16
data sharing
12
health data
12
health
11
participants
11
sharing
9
public deliberation
8
deliberation process
8
patient perspectives
8
perspectives health
8

Similar Publications

Sharing responsibility for health care successes and failures.

Am J Manag Care

January 2025

University of Michigan, 2800 Plymouth Rd, Bldg 16, Floor 4, 016-400S-25, Ann Arbor, MI 48109-2800. Email:

View Article and Find Full Text PDF

Background: The increased use of digital data in health research demands interdisciplinary collaborations to address its methodological complexities and challenges. This often entails merging the linear deductive approach of health research with the explorative iterative approach of data science. However, there is a lack of structured teaching courses and guidance on how to effectively and constructively bridge different disciplines and research approaches.

View Article and Find Full Text PDF

Background: The internet is a key source of health information, but the quality of content from popular search engines varies, posing challenges for users-especially those with low health or digital health literacy. To address this, the "tala-med" search engine was developed in 2020 to provide access to high-quality, evidence-based content. It prioritizes German health websites based on trustworthiness, recency, user-friendliness, and comprehensibility, offering category-based filters while ensuring privacy by avoiding data collection and advertisements.

View Article and Find Full Text PDF

Understanding clinical trajectories of sepsis patients is crucial for prognostication, resource planning, and to inform digital twin models of critical illness. This study aims to identify common clinical trajectories based on dynamic assessment of cardiorespiratory support using a validated electronic health record data that covers retrospective cohort of 19,177 patients with sepsis admitted to ICUs of Mayo Clinic Hospitals over eight-year period. Patient trajectories were modeled from ICU admission up to 14 days using an unsupervised machine learning two-stage clustering method based on cardiorespiratory support in ICU and hospital discharge status.

View Article and Find Full Text PDF

Background: Efficient emergency patient transport systems, which are crucial for delivering timely medical care to individuals in critical situations, face certain challenges. To address this, CONNECT-AI (CONnected Network for EMS Comprehensive Technical-Support using Artificial Intelligence), a novel digital platform, was introduced. This artificial intelligence (AI)-based network provides comprehensive technical support for the real-time sharing of medical information at the prehospital stage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!