The phosphatidylcholine floppase multidrug resistance protein 3 (MDR3) is an essential hepatobiliary transport protein. MDR3 dysfunction is associated with various liver diseases, ranging from severe progressive familial intrahepatic cholestasis to transient forms of intrahepatic cholestasis of pregnancy and familial gallstone disease. Single amino acid substitutions are often found as causative of dysfunction, but identifying the substitution effect in in vitro studies is time and cost intensive. We developed variant assessor of MDR3 (Vasor), a machine learning-based model to classify novel MDR3 missense variants into the categories benign or pathogenic. Vasor was trained on the largest data set to date that is specific for benign and pathogenic variants of MDR3 and uses general predictors, namely Evolutionary Models of Variant Effects (EVE), EVmutation, PolyPhen-2, I-Mutant2.0, MUpro, MAESTRO, and PON-P2 along with other variant properties, such as half-sphere exposure and posttranslational modification site, as input. Vasor consistently outperformed the integrated general predictors and the external prediction tool MutPred2, leading to the current best prediction performance for MDR3 single-site missense variants (on an external test set: F1-score, 0.90; Matthew's correlation coefficient, 0.80). Furthermore, Vasor predictions cover the entire sequence space of MDR3. Vasor is accessible as a webserver at https://cpclab.uni-duesseldorf.de/mdr3_predictor/ for users to rapidly obtain prediction results and a visualization of the substitution site within the MDR3 structure. The MDR3-specific prediction tool Vasor can provide reliable predictions of single-site amino acid substitutions, giving users a fast way to initially assess whether a variant is benign or pathogenic.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9592774 | PMC |
http://dx.doi.org/10.1002/hep4.2088 | DOI Listing |
Hum Genomics
January 2025
Department of Biology, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133, Rome, Italy.
Background: The Immunoglobulin Heavy Chain (IGH) genomic region is responsible for the production of circulating antibodies and warrants careful investigation for its association with COVID-19 characteristics. Multiple allelic variants within and across different IGH gene segments form a limited set of haplotypes. Previous studies have shown associations between some of these haplotypes and clinical outcomes of COVID-19.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06536, USA.
To regain infectivity, Trypanosoma brucei, the pathogen causing Human and Animal African trypanosomiasis, undergoes a complex developmental program within the tsetse fly known as metacyclogenesis. RNA-binding protein 6 (RBP6) is a potent orchestrator of this process, however, an understanding of its functionally important domains and their mutational constraints is lacking. Here, we perform deep mutational scanning of the entire RBP6 primary structure.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Chemistry, Faculty of Basic Sciences, Ayatollah Boroujerdi University, Boroujerd, Iran.
A cost-effective strategy is reported utilizing ionic liquid (IL), 1-hexyl-3-methylimidazolium bisulfate ([HMIM] HSO), to delaminate TiC MXene, thereby enhancing its efficiency in electrocatalyzing tryptophan (Trp) oxidation. The positively charged IL effectively intercalates within the negatively charged MXene layers, fostering structural stability through π-π stacking and electrostatic interactions. Consequently, the resulting IL-TiC composite not only maintained the inherent electronic conductivity of TiC but also significantly augmented its electrocatalytic prowess.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Environmental and Biochemical Sciences, James Hutton Institute, Dundee, Scotland, UK.
Profiling of secondary metabolites within Fragaria sp. (strawberry), Rubus sp. (raspberries and blackberries), and Ribes sp.
View Article and Find Full Text PDFReprod Sci
January 2025
Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
The metabolomic approach has recently been used in the assessment of semen quality and male fertility. Additionally, the crucial roles of branched-chain amino acids (BCAAs) and aromatic amino acids (AAAs) in metabolic syndrome (MetS) were reported. However, little information exists about the association between BCAAs and AAAs with semen parameters, particularly in men with and without MetS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!