A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Point defects and their impact on electrochemical performance in NaMnO for sodium-ion battery cathode application. | LitMetric

Point defects and their impact on electrochemical performance in NaMnO for sodium-ion battery cathode application.

Phys Chem Chem Phys

Chair of Computational Materials Design (CMD), Faculty of Materials Science, Kim Il Sung University, Pyongyang, PO Box 76, Democratic People's Republic of Korea.

Published: September 2022

Sodium manganese oxide Na.MnO (NMO) in an open structure with large tunnels is of great interest for sodium-ion battery cathode materials due to its high electrode voltage and capacity. However, its practical application is limited by poor rate performance, which can be tuned and improved by controlling point defects. We herein present a comprehensive study of intrinsic point defects in NMO using density functional theory (DFT) calculations in combination with thermodynamics. Using the DFT+ approach, we determine the formation energies of elementary defects and defect complexes depending on the sets of atomic chemical potentials, corresponding to a certain thermodynamic condition for the synthesis of stable NMO. Sodium interstitials are found to have the lowest formation energies in the relevant ranges of temperature and pressure. Other intrinsic point defects such as oxygen vacancies, sodium vacancies and manganese antisites can also be formed with proper formation energies and have an impact on the cathode performance. Compared to the perfect system, oxygen vacancies lower the electrode voltage, whereas manganese vacancies and antisites increase the voltage. We find that most point defects and defect complexes improve the sodium ion diffusivity, highlighting a proper control of defect formation for enhancing the performance of sodium-ion batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp03199jDOI Listing

Publication Analysis

Top Keywords

point defects
20
formation energies
12
sodium-ion battery
8
battery cathode
8
electrode voltage
8
intrinsic point
8
defects defect
8
defect complexes
8
oxygen vacancies
8
point
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!