Doxorubicin (Dox), an anthracycline antibiotic with potent antitumor effects, has limited clinical applications due to cumulative cardiotoxicity. Ca /calmodulin-dependent protein kinase II (CaMKII) is implicated in the pathological progression of Dox-induced cardiotoxicity. This study examined the hypothesis that CaMKII exacerbates Dox-induced cardiotoxicity by promoting endoplasmic reticulum stress and apoptosis through regulation of the inositol-requiring enzyme 1α (IRE1α)/spliced X-box binding protein 1 (XBP1s) pathway. Our results demonstrated that CaMKII activation and IRE1α/XBP1s pathway were involved in Dox-treated hearts. CaMKII inhibition with KN-93 ameliorated Dox-induced cardiac dysfunction and pathological myocardial changes. In addition, CaMKII inhibition prevented Dox-induced endoplasmic reticulum stress and apoptosis. Moreover, CaMKII inhibition increased the expression of IRE1α and XBP1s in Dox-treated hearts. The IRE1α inhibitor 4μ8C blocked the protective effect of CaMKII inhibition against Dox-induced cardiotoxicity. Mechanistically, 4μ8C prevented the effects of CaMKII inhibition on Dox-induced endoplasmic reticulum stress and apoptosis by inhibiting the expression of IRE1α and XBP1s. Additionally, treatment with rhADAMTS13 decreased the protein level of thrombospondin 1 (TSP1) and the phosphorylation of CaMKII in Dox-treated human AC16 cardiomyocytes. Taken together, these results demonstrate that the ADAMTS13-TSP1 axis regulates CaMKII activation and exacerbates Dox-induced cardiotoxicity by triggering endoplasmic reticulum stress and apoptosis by inhibiting the IRE1α/XBP1s pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9575131PMC
http://dx.doi.org/10.1111/jcmm.17560DOI Listing

Publication Analysis

Top Keywords

endoplasmic reticulum
20
reticulum stress
20
stress apoptosis
20
camkii inhibition
20
dox-induced cardiotoxicity
16
ire1α/xbp1s pathway
12
camkii
11
exacerbates dox-induced
8
camkii activation
8
dox-treated hearts
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!