Abnormal linear dichroism transition in two-dimensional PdPS.

Nanoscale

Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R. China.

Published: October 2022

The linear dichroism (LD) conversion shows promising applications for polarized detectors, optical transition and light propagation. However, polarity reversal always occurs at a certain wavelength in LD materials, which can only distinguish two wavelength bands as wavelength-selective photodetectors. In this study, the multi-degree-of-freedom of optical anisotropy based on 2D PdPS flakes is carefully described, in which four critical switching wavelengths are observed. Remarkably, the quadruple LD conversion shows a significant wavelength-dependent behavior, allowing us to pinpoint five wavelength bands, 200-239 nm, 239-259 nm, 259-469 nm, 469-546 nm, and 546-700 nm, for a wavelength-selective approach to photodetectors. In addition, the polarized photoresponse under 532 nm was realized with an anisotropy factor of ∼1.51 and further illustrated the in-plane anisotropy. Raman spectroscopy of PdPS flakes also shows strong phonon anisotropy. The unique wavelength-selective property shows great potential for the miniaturization and integration of photodetectors.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2nr03587aDOI Listing

Publication Analysis

Top Keywords

linear dichroism
8
wavelength bands
8
pdps flakes
8
abnormal linear
4
dichroism transition
4
transition two-dimensional
4
two-dimensional pdps
4
pdps linear
4
dichroism conversion
4
conversion promising
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!