Aerial maneuvering by plethodontid salamanders spanning an arboreality gradient.

J Exp Biol

Department of Integrative Biology, 4202 East Fowler Avenue, Science Center 110, University of South Florida, Tampa, FL 33620, USA.

Published: October 2022

Wandering salamanders (Aneides vagrans) inhabit the crowns of the world's tallest trees, taking refuge in epiphytic fern mats within these complex arboreal environments. These salamanders readily jump from the canopy when disturbed and maintain stable postures while falling via fine adjustments of the limbs and tail in lieu of dedicated aerodynamic control surfaces, thus reliably carrying out non-vertical descent. Here, we examined the aerial behavior and performance of A. vagrans and three other species of plethodontid salamander across a habitat gradient of arboreality by recording salamanders falling from short heights and moving within the jet of a vertical wind tunnel. Kinematic performance of aerial behavior in plethodontid salamanders was correlated with a gradient of arboreal habitats; moreover, salamanders from arboreal niches were more effective in slowing and redirecting descent compared with other salamanders. Aneides vagrans and the closely related Aneides lugubris consistently engaged in parachuting and gliding when falling; their trajectories were very steep, but were sufficiently angled to enable contact with either the home trunk or nearby branches during falls or jumps from great heights. Aerial maneuvering in arboreal salamanders is similar to that seen in other vertebrates capable of non-vertical and controlled descent, suggesting that the long limbs and active tail of these arboreal plethodontids (often cited as adaptations for climbing) may also contribute to parachuting and gliding when falling from trees. These aerial behaviors within the redwood canopy warrant further investigations into other canopy residents that lack conspicuous surfaces for aerodynamic control.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.244598DOI Listing

Publication Analysis

Top Keywords

aerial maneuvering
8
salamanders
8
plethodontid salamanders
8
salamanders aneides
8
aneides vagrans
8
aerodynamic control
8
aerial behavior
8
parachuting gliding
8
gliding falling
8
aerial
5

Similar Publications

Acrobatics at the insect scale: A durable, precise, and agile micro-aerial robot.

Sci Robot

January 2025

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.

Aerial insects are exceptionally agile and precise owing to their small size and fast neuromotor control. They perform impressive acrobatic maneuvers when evading predators, recovering from wind gust, or landing on moving objects. Flapping-wing propulsion is advantageous for flight agility because it can generate large changes in instantaneous forces and torques.

View Article and Find Full Text PDF

Aerodynamic analysis of complex flapping motions based on free-flight biological data.

Bioinspir Biomim

January 2025

School of Mechatronical Engineering, Beijing Institute of Technology, 5 South Zhonghuancun, Haidian District, Beijing 100081, Beijing, 100081, CHINA.

The wings of birds contain complex morphing mechanisms that enable them to perform remarkable aerial maneuvers. Wing morphing is often described using five wingbeat motion parameters: flapping, bending, folding, sweeping, and twisting. However, owing to a lack of real bird flight data, in-depth studies on the aerodynamic properties of these coupled motions remain scarce.

View Article and Find Full Text PDF

Path planning technology is of great consequence in the field of unmanned aerial vehicles (UAVs). In order to enhance the safety, path smoothness, and shortest path acquisition of UAVs undertaking tasks in complex urban multi-obstacle environments, this paper proposes an innovative composite improvement algorithm that integrates the advantages of the jellyfish search algorithm and the particle swarm algorithm. The algorithm effectively overcomes the shortcomings of a single algorithm, including parameter setting issues, slow convergence rates, and a tendency to become trapped in local optima.

View Article and Find Full Text PDF

Many wingless arboreal arthropods can glide back to tree trunks following free falls. However, little is known about the behaviors and aerodynamics underlying such aerial performance, and how this may be influenced by body size. Here, we studied gliding performance by nymphs of the stick insect Extatosoma tiaratum, focusing on the dynamics of J-shaped trajectories and how gliding capability changes during ontogeny.

View Article and Find Full Text PDF

A twist of the tail in turning maneuvers of bird-inspired drones.

Sci Robot

November 2024

School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland.

Article Synopsis
  • - A banked turn is a flight maneuver where birds and aircraft adjust their lift direction, with birds using specialized wing morphing and tail twisting instead of traditional ailerons.
  • - Researchers created a feathered drone inspired by raptors to study how tail twisting helps achieve coordinated banked turns by influencing lift and yaw moments.
  • - The study showed that manipulating the tail can enhance lift and control during both low-speed and high-speed turns, advancing our understanding of bird flight and offering new techniques for agile drone design.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!