GPCR heteromers: An overview of their classification, function and physiological relevance.

Front Endocrinol (Lausanne)

Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia.

Published: September 2022

G protein-coupled receptors (GPCRs) are capable of interacting to form higher order structures such as homomers and heteromers. Heteromerisation in particular has implications for receptor function, with research showing receptors can attain unique expression, ligand binding, signalling and intracellular trafficking upon heteromerisation. As such, GPCR heteromers represent novel drug targets with extensive therapeutic potential. Changes to ligand affinity, efficacy and G protein coupling have all been described, with alterations to these pharmacological aspects now well accepted as common traits for heteromeric complexes. Changes in internalisation and trafficking kinetics, as well as β-arrestin interactions are also becoming more apparent, however, few studies to date have explicitly looked at the implications these factors have upon the signalling profile of a heteromer. Development of ligands to target GPCR heteromers both experimentally and therapeutically has been mostly concentrated on bivalent ligands due to difficulties in identifying and developing heteromer-specific ligands. Improving our understanding of the pharmacology and physiology of GPCR heteromers will enable further development of heteromer-specific ligands with potential to provide therapeutics with increased efficacy and decreased side effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9468249PMC
http://dx.doi.org/10.3389/fendo.2022.931573DOI Listing

Publication Analysis

Top Keywords

gpcr heteromers
16
heteromer-specific ligands
8
gpcr
4
heteromers overview
4
overview classification
4
classification function
4
function physiological
4
physiological relevance
4
relevance protein-coupled
4
protein-coupled receptors
4

Similar Publications

GPR88 impairs the signaling of kappa opioid receptors in a heterologous system and in primary striatal neurons.

Neuropharmacology

November 2024

Network Center for Biomedical Research in Neurodegenerative Diseases. CiberNed., Spanish National Health Institute Carlos iii, Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Molecular Neurobiology Laboratory, Dept. Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain; School of Chemistry, Universitat de Barcelona, Barcelona, Spain. Electronic address:

The physiological role of GPR88, an orphan G protein-coupled receptor (GPCR) predominantly expressed in the striatum, remains unclear, despite its altered expression in parkinsonian animal models. GPR88 is known to interact with other GPCRs. Specifically, GPR88 expression inhibits signaling mediated by the μ-opioid receptor in cells coexpressing both receptors.

View Article and Find Full Text PDF

Background: Homo- and heteromerization of G protein-coupled receptors (GPCRs) plays an important role in the regulation of receptor functions. Recently, we demonstrated an interaction between the serotonin receptor 7 (5-HT7R), a class A GPCR, and the cell adhesion molecule CD44. However, the functional consequences of this interaction on 5-HT7R-mediated signaling remained enigmatic.

View Article and Find Full Text PDF
Article Synopsis
  • - Calcium ion (Ca) homeostasis is essential for proper neuron function, and this study investigated how the CB receptor (CBR) interacts with the ATR receptor to regulate cytoplasmic Ca levels in CNS neurons.
  • - A specific type of interaction called AT-CB receptor heteromers (ATCBHets) was identified using bioluminescence resonance energy transfer (BRET) in lab cells and in the context of Parkinson's disease (PD).
  • - The study found that activation of ATR reduces Ca levels in the presence of cannabinoids, and in a rat model of PD, lower levels of ATCBHets were linked to lesioned neurons, suggesting that cannabinoids might help mitigate calcium imbalance related to levodopa-induced
View Article and Find Full Text PDF

The activation of heterotrimeric G proteins through G-protein-coupled receptors (GPCRs) is a ubiquitous signaling mechanism in eukaryotic biology. The three principal molecular components of this cascade are the GPCR, Gα subunit, and Gβγ subunit. Measurement of interactions between these components and their downstream effectors in live cells is paramount to understanding how cells fine-tune their physiology in response to many external stimuli.

View Article and Find Full Text PDF

Allosterism in the adenosine A and cannabinoid CB heteromer.

Br J Pharmacol

July 2024

Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain.

Article Synopsis
  • Allosterism is a regulatory mechanism for G protein-coupled receptors (GPCRs) that can be affected by ligand binding or interactions between different GPCRs; the study focuses on the allosteric properties of A receptor and CB receptor when they form a heteromer.
  • Experimental techniques used include measuring cAMP levels, analyzing phosphorylation of kinases, and using dynamic mass redistribution methods, showing how disrupting the heteromer affects receptor activation.
  • Key findings reveal that the A receptor can inhibit signaling in the CB receptor by blocking essential structural components, and that certain antagonists can change the interaction dynamics to allow for receptor activation, highlighting a unique allosteric mechanism in GPCR signaling.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!