Hypoxia-inducible factors, mTOR, and astrin constitute an integrative regulatory network in colon cancer cells.

Biochem Biophys Rep

Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria,Cd, Mexico, 04510, Mexico.

Published: December 2022

Astrin/SPAG5 is a mitotic spindle protein found to be overexpressed in several human cancers, functioning as an oncogene. The expression of Astrin has not been reported so far in colon cancer, nor has it been related to HIFs expression or action. Since mTOR, Astrin, and hypoxia-inducible factors (HIFs) are involved in promoting the growth and survival of cancer cells, we investigated the possible interaction between them in cultured colon cancer cells. Both Astrin and HIF-1α and HIF-2α protein levels were found only expressed in colon cancer cells compared with nonmalignant cells. Our data indicate that mTOR stimulates both Astrin and HIFs expression, but notably, mTORC activity seems to be independent of Astrin expression levels. However, while HIF-1α or HIF-2α stable knockdown increased Astrin expression, mTOR activity was affected in an opposite way by HIF-1α or HIF-2α silencing, indicating that HIF-1α inhibits mTOR while HIF-2α stimulates its activity. These data suggest that mTOR, Astrin, and HIFs compose an integrative network interacting to activate positive or negative regulatory loops probably to coordinate cancer cell growth, metabolism, and survival under oncogenic stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9467878PMC
http://dx.doi.org/10.1016/j.bbrep.2022.101336DOI Listing

Publication Analysis

Top Keywords

colon cancer
16
cancer cells
16
mtor astrin
12
hif-1α hif-2α
12
hypoxia-inducible factors
8
astrin
8
hifs expression
8
astrin hifs
8
astrin expression
8
mtor
6

Similar Publications

Purpose: This study aimed to investigate the efficacy of measuring lymph node size on preoperative CT imaging to predict pathological lymph node metastasis in patients with colon cancer to enhance diagnostic accuracy and improve treatment planning by establishing more reliable assessment methods for lymph node metastasis.

Methods: We retrospectively analyzed 1,056 patients who underwent colorectal resection at our institution between January 2004 and March 2020. From this cohort, 694 patients with resectable colon cancer were included in the study.

View Article and Find Full Text PDF

Activation of sphingosine-1-phosphate receptor 2 (S1PR2) upregulates dihydropyrimidine dehydrogenase (DPD) expression in colon cancer cells.

J Adv Res

January 2025

Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China; Joint Laboratory for Research & Treatment of Spinal Cord Injury in Spinal Deformity, Capital Medical University, Beijing, China. Electronic address:

Introduction: Dihydropyrimidine dehydrogenase (DPD) is a major determinant of cancer 5-fluorouracyl (5-FU) resistance via its direct degradation. However, the mechanisms of tumoral DPD upregulation have not been fully understood.

Objectives: This study aimed to explore the role of S1PR2 in the regulation of tumoral DPD expression, identifying S1PR2 as the potential target for reversing 5-FU resistance.

View Article and Find Full Text PDF

Rethinking the rise of early onset gastrointestinal cancers: a call to action.

JNCI Cancer Spectr

January 2025

Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC.

Since the early 1990s, there has been a dramatic rise in gastrointestinal cancers diagnosed in patients under age 50 for reasons that remain poorly understood. The most significant change has been the increase in incidence rates of early-onset colorectal cancer, especially rates of left-sided colon and rectal cancers. Increases in gastric, pancreatic, and other gastrointestinal cancer diagnoses have further contributed to this trend.

View Article and Find Full Text PDF

Oral administration of Folium Artemisiae Argyi-derived exosome-like nanovesicles can improve ulcerative colitis by regulating intestinal microorganisms.

Phytomedicine

January 2025

General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China; Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China; Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China; School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China. Electronic address:

Background: Ulcerative colitis (UC), an inflammatory disease characterized by intestinal barrier dysfunction, poses significant challenges because of the toxicity and adverse effects commonly associated with conventional therapies. Safer and more efficacious treatment strategies are needed.

Purpose: The purpose of this study was to treat UC with Folium Artemisiae Argyi exosome-like nanovesicles (FAELNs) and to explore its related mechanism to provide a safer and more effective means for the treatment of ulcerative colitis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!