Resource selection in sexually dimorphic ungulates is at least partially explained by sex-specific resource requirements and risk aversion strategies. Females generally spend more time in areas with less risk and abundant, high-quality forage due to their smaller body size. However, demographically variable responses to risk are context dependent, and few have concurrently quantified male and female behavior within areas with the same resource base. We captured 111 (54 males, 57 females) adult white-tailed deer () from 2009 to 2018 on a site in South Carolina, USA, where hunters were the primary source of adult mortality. We fit each deer with a GPS collar programmed to collect locations at 30-min intervals. Upon collar recovery, we analyzed the data to estimate sex- and time-specific selection for, and distance to, various cover types. While both sexes generally avoided risky areas (i.e., sites hunted more frequently) during the day, females ( = .41) were more likely than males ( = .16) to use risky areas containing abundant food resources during the day, where  = probability of selection. Our findings indicate that female white-tailed deer may be forced to utilize high risk areas during high risk periods due to their smaller body size and increased nutritional demands, whereas larger males are better able to forgo foraging opportunities during risky periods to mitigate risk; however, our study design left room for the possibility that our observations were driven by innate sex-specific patterns in white-tailed deer. Nonetheless, our study contributes information to the literature by describing sex-specific resource selection by diel period on a site where sexes shared the same resources and were presented with the same landscape of risk.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9465197PMC
http://dx.doi.org/10.1002/ece3.9277DOI Listing

Publication Analysis

Top Keywords

white-tailed deer
16
male female
8
female white-tailed
8
resource selection
8
sex-specific resource
8
smaller body
8
body size
8
risky areas
8
high risk
8
risk
7

Similar Publications

Relatedness of White-Tailed Deer from Culling Efforts Within Chronic Wasting Disease Management Zones in Minnesota.

Pathogens

January 2025

U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, 403 Forest Resources Building, The Pennsylvania State University, University Park, PA 16802, USA.

In white-tailed deer (), closely related females form social groups, avoiding other social groups. Consequently, females infected with chronic wasting disease (CWD) are more likely to infect social group members. Culling has been used to reduce CWD transmission in high-risk areas; however, its effectiveness in removing related individuals has not been assessed.

View Article and Find Full Text PDF

Seroprevalence of in White-Tailed Deer () in New York State.

Pathogens

January 2025

Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA.

The parasitic protozoa, (), is a model organism for one health because of its wide-ranging impacts on humans, wildlife, and domestic animals. Intermediate hosts, including white-tailed deer (), have been implicated in its maintenance. Prior analysis of seroprevalence in New York State deer focused on rural areas; however, the high density of domestic cats () in urban areas has been implicated in its spread amongst deer.

View Article and Find Full Text PDF

Detection of DNA in Deer Keds: Massachusetts, USA.

Insects

January 2025

Laboratory of Medical Zoology, Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA.

Deer keds ( spp. and ) are hematophagous ectoparasites that primarily infest white-tailed deer () and other cervids in the United States. The distribution of deer keds in the northeastern United States and the pathogens they harbor remains relatively unexplored.

View Article and Find Full Text PDF

Evolution of SARS-CoV-2 in white-tailed deer in Pennsylvania 2021-2024.

PLoS Pathog

January 2025

Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.

SARS-CoV-2 continues to transmit and evolve in humans and animals. White-tailed deer (Odocoileus virginianus) have been previously identified as a zoonotic reservoir for SARS-CoV-2 with high rates of infection and probable spillback into humans. Here we report sampling 1,127 white-tailed deer (WTD) in Pennsylvania, and a genomic analysis of viral dynamics spanning 1,017 days between April 2021 and January 2024.

View Article and Find Full Text PDF

Plant nutrient concentrations inform white-tailed deer diet limitations.

J Environ Manage

January 2025

School of Natural Resources, University of Tennessee, 401 Agriculture and Natural Resources Bldg., Knoxville, TN, 37996, USA.

Management of large herbivores often involves increasing availability of forages sufficient in nutrient density to allow animals to meet dietary demands. Nutritional carrying capacity (NCC) models commonly are used to compare plant communities and management strategies, but failure to use the most limiting nutrient could result in overestimating NCC. Moreover, the relationship between limiting nutrients often is not considered, which may influence the utility of NCC models based on a single nutrient, especially when herbivores must simultaneously meet multiple constraints.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!