Due to its responsiveness to the tumour microenvironment (TME), chemodynamic therapy (CDT) based on the Fenton reaction to produce cytotoxic reactive oxygen species (ROS) to destroy tumor has drawn more interest. However, the Fenton's reaction potential for therapeutic use is constrained by its modest efficacy. Here, we develop a novel injectable hydrogel system (FMH) on the basis of FeGA/MoS dual quantum dots (QDs), which uses near-infrared (NIR) laser in order to trigger the synergistic catalysis and photothermal effect of FeGA/MoS for improving the efficiency of the Fenton reaction. Mo in MoS QDs can accelerate the conversion of Fe to Fe, thereby promoting the efficiency of Fenton reaction, and benefiting from the synergistically enhanced CDT/PTT, FMH combined with NIR has achieved good anti-tumour effects and experiments. Furthermore, the quantum dots are easily metabolized after treatment because of their ultrasmall size, without causing any side effects. This is the first report to study the co-catalytic effect of MoS and Fe at the quantum dot level, as well as obtain a good PTT/CDT synergy, which have implications for future anticancer research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9468328PMC
http://dx.doi.org/10.3389/fbioe.2022.998571DOI Listing

Publication Analysis

Top Keywords

quantum dots
12
fenton reaction
12
injectable hydrogel
8
chemodynamic therapy
8
efficiency fenton
8
novel dual
4
dual mos/fega
4
quantum
4
mos/fega quantum
4
dots endowed
4

Similar Publications

Digital fluorescence immunoassay (DFI) based on random dispersion magnetic beads (MBs) is one of the powerful methods for ultrasensitive determination of protein biomarkers. However, in the DFI, improving the limit of detection (LOD) is challenging since the ratio of signal-to-background and the speed of manual counting beads are low. Herein, we developed a deep-learning network (ATTBeadNet) by utilizing a new hybrid attention mechanism within a UNet3+ framework for accurately and fast counting the MBs and proposed a DFI using CdS quantum dots (QDs) with narrow peak and optical stability as reported at first time.

View Article and Find Full Text PDF

A Novel Aggregation-Induced Emission-Based Electrochemiluminescence Aptamer Sensor Utilizing Red-Emissive Sulfur Quantum Dots for Rapid and Sensitive Malathion Detection.

Biosensors (Basel)

January 2025

Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.

Rapid, effective, and cost-effective methods for large-scale screening of pesticide residues in the environment and agricultural products are important for assessing potential environmental risks and safeguarding human health. Here, we constructed a novel aggregation-induced emission (AIE) electrochemical aptamer (Apt) sensor based on red-emissive sulfur quantum dots (SQDs), which aimed at the rapid screening and quantitative detection of malathion. SQDs were prepared using a two-step oxidation method with good electrochemiluminescence (ECL) optical properties.

View Article and Find Full Text PDF

Aptamer-Conjugated Multi-Quantum Dot-Embedded Silica Nanoparticles for Lateral Flow Immunoassay.

Biosensors (Basel)

January 2025

Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.

Lateral flow immunoassays (LFIAs) are widely used for their low cost, simplicity, and rapid results; however, enhancing their reliability requires the meticulous selection of ligands and nanoparticles (NPs). SiO@QD@SiO (QD) nanoparticles, which consist of quantum dots (QDs) embedded in a silica (SiO) core and surrounded by an outer SiO shell, exhibit significantly higher fluorescence intensity (FI) compared to single QDs. In this study, we prepared QD@PEG@Aptamer, an aptamer conjugated with QD using succinimidyl-[(N-maleimidopropionamido)-hexaethyleneglycol]ester, which is 130 times brighter than single QDs, for detecting carbohydrate antigen (CA) 19-9 through LFIA.

View Article and Find Full Text PDF

A novel electrochemical detection method utilizing a cost-effective hybrid-modified electrode has been established. A glassy carbon (GC) modified electrode was tested for its ability to measure electrochemical tTG antibody levels, which are essential for diagnosing and monitoring Celiac disease (CD). Tissue transglutaminase protein biomolecules are immobilized on a quantum dots-polypyrrole nanocomposite in the improved electrode.

View Article and Find Full Text PDF

Integrating functional materials with photonic and optoelectronic technologies has revolutionized medical diagnostics, enhancing imaging and sensing capabilities. This review provides a comprehensive overview of recent innovations in functional materials, such as quantum dots, perovskites, plasmonic nanomaterials, and organic semiconductors, which have been instrumental in the development of diagnostic devices characterized by high sensitivity, specificity, and resolution. Their unique optical properties enable real-time monitoring of biological processes, advancing early disease detection and personalized treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!