The primary or acquired resistance to anti-VEGF inhibitors remains a common problem in cancer treatment. Therefore, identifying potential biomarkers enables a better understanding of the precise mechanism. Through the GEO database, three profiles associated with bevacizumab (BV) resistance to ovarian cancer, glioma, and non-small-cell lung carcinoma, respectively, were collected for the screening process, and two genes were found. A-kinase anchor protein 12 (AKAP12), one of these two genes, correlates with tumorigenesis of some cancers. However, the role of AKAP12 in pan-cancer remains poorly defined. The present study first systematically analyzed the association of AKAP12 with anti-VEGF inhibitors' sensitivity, clinical prognosis, DNA methylation, protein phosphorylation, and immune cell infiltration across various cancers via bioinformatic tools. We found that AKAP12 was upregulated in anti-VEGF therapy-resistant cancers, including ovarian cancer (OV), glioblastoma (GBM), lung cancer, and colorectal cancer (CRC). A high AKAP12 expression revealed dismal prognoses in OV, GBM, and CRC patients receiving anti-VEGF inhibitors. Moreover, AKAP12 expression was negatively correlated with cancer sensitivity towards anti-VEGF therapy. Clinical prognosis analysis showed that AKAP12 expression predicted worse prognoses of various cancer types encompassing colon adenocarcinoma (COAD), OV, GBM, and lung squamous cell carcinoma (LUSC). Gene mutation status may be a critical cause for the involvement of AKAP12 in resistance. Furthermore, lower expression of AKAP12 was detected in nearly all cancer types, and hypermethylation may explain its decreased expression. A decreased phosphorylation of T1760 was observed in breast cancer, clear-cell renal cell carcinoma, and lung adenocarcinoma. For the immunologic significance, AKAP12 was positively related to the abundance of pro-tumor cancer-associated fibroblasts (CAFs) in various types of cancer. The results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested that "cell junction organization" and "MAPK pathway" participated in the effect of AKAP12. Importantly, we discovered that AKAP12 expression was greatly associated with metastasis of lung adenocarcinoma as well as differential and angiogenesis of retinoblastoma through investigating the single-cell sequencing data. Our study showed that the dual role of AKAP12 in various cancers and AKAP12 could serve as a biomarker of anti-VEGF resistance in OV, GBM, LUSC, and COAD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9468827PMC
http://dx.doi.org/10.3389/fgene.2022.943006DOI Listing

Publication Analysis

Top Keywords

akap12 expression
16
akap12
15
role akap12
12
anti-vegf inhibitors
12
cancer
10
resistance anti-vegf
8
ovarian cancer
8
clinical prognosis
8
gbm lung
8
cancer types
8

Similar Publications

Therapeutic drug development for central nervous system injuries, such as traumatic brain injury (TBI), presents significant challenges. TBI results in primary mechanical damage followed by secondary injury, leading to cognitive dysfunction and memory loss. Our recent study demonstrated the potential of carbon monoxide-releasing molecules (CORMs) to improve TBI recovery by enhancing neurogenesis.

View Article and Find Full Text PDF

Insights into the regulation of mRNA translation by scaffolding proteins.

Biochem Soc Trans

December 2024

Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast BT9 7BL, U.K.

Regionalisation of molecular mechanisms allows cells to fine-tune their responses to dynamic environments. In this context, scaffolds are well-known mediators of localised protein activity. These phenomenal proteins act as docking sites where pathway components are brought together to ensure efficient and reliable flow of information within the cell.

View Article and Find Full Text PDF

Objective: To corroborate the efficacy of Jintiange capsules (JTGs) in the treatment of osteoarthritis (OA) by exploring the potential mechanism of action of synovial mesenchymal stem cell exosomes (SMSC-Exos) and articular chondrocytes (ACs) through transcriptome sequencing (RNA-seq).

Methods: Type II collagenase was used to induce OA in rats. The efficacy of JTGs was confirmed by macroscopic observation of articular cartilage, micro-CT observation, and safranin fast green staining.

View Article and Find Full Text PDF

Single-cell transcriptome analysis identifies subclusters and signature with N-glycosylation in endometrial cancer.

Clin Transl Oncol

November 2024

Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuhan, 430060, China.

Introduction: Endometrial cancer (EC) is a prevalent gynecologic cancer, with worldwide increasing incidence and disease-associated mortality. N-glycosylation, a critical post-translational modification, has been implicated in cancer progression and immune response modulation. We aimed to elucidate the role of N-glycosylation-related genes on EC cell heterogeneity, prognosis, and immunotherapy response.

View Article and Find Full Text PDF

Ubiquitin-related gene markers predict immunotherapy response and prognosis in patients with epithelial ovarian carcinoma.

Sci Rep

October 2024

First Affiliated Hospital, Department of Pathology, Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi University School of Medicine, Shihezi, China.

Epithelial ovarian carcinoma (EOC) is the most fatal among female reproductive system tumors. The immune tumor microenvironment and ubiquitin-proteasome pathway are closely related to the proliferation, invasion, and response to chemotherapy in EOC. However, their specific roles in EOC have not been fully elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!