Introduction: Primary dysmenorrhea (PDM) is a common gynecological disease and chronic pain disorder. Moxibustion, a form of traditional Chinese medicine therapy, has proven to be effective for PDM. However, the central mechanisms of PDM and moxibustion for PDM are still unclear. This study aims to explore the potential central mechanism of PDM and clarify the possible mechanism of moxibustion for relieving pain.

Materials And Methods: A total of 23 PDM patients and 23 matched healthy controls (HCs) were enrolled. For PDM patients, resting-state functional magnetic resonance imaging (rs-fMRI) data were collected pre- and post-moxibustion treatment of 3 consecutive menstrual cycles, respectively. For HCs, rs-fMRI data were collected in the baseline. The resting-state functional connectivity strength (rs-FCS) analysis and the resting-state functional connectivity (rs-FC) analysis based on the region of interest (ROI) were combined to be conducted.

Results: Compared to HCs, PDM patients showed weaker rs-FCS in the left inferior frontal gyrus (IFG). After the moxibustion treatment, rs-FCS in the left IFG was increased with clinical improvement. Then, the left IFG was chosen as ROI, and the rs-FC analysis was conducted. It showed that the left IFG rs-FC in the bilateral anterior cingulate cortex (ACC)/middle cingulate cortex (MCC), the left posterior cingulate cortex (PCC)/precuneus (PCU), and the left parahippocampal gyrus (PHG) decreased after moxibustion treatment, most of which belong to the default mode network (DMN).

Conclusion: Our results highlight the role of the left IFG and the DMN in PDM. Specifically, the central mechanism of moxibustion for analgesia may be related to modulating the disorders of the reappraisal and processing of pain stimuli through influencing the cognition of pain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9469737PMC
http://dx.doi.org/10.3389/fnins.2022.969064DOI Listing

Publication Analysis

Top Keywords

resting-state functional
16
functional connectivity
16
left ifg
16
pdm patients
12
cingulate cortex
12
pdm
9
primary dysmenorrhea
8
functional magnetic
8
magnetic resonance
8
resonance imaging
8

Similar Publications

Chronic pain is a prevalent and debilitating condition whose neural mechanisms are incompletely understood. An imbalance of cerebral excitation and inhibition (E/I), particularly in the medial prefrontal cortex (mPFC), is believed to represent a crucial mechanism in the development and maintenance of chronic pain. Thus, identifying a non-invasive, scalable marker of E/I could provide valuable insights into the neural mechanisms of chronic pain and aid in developing clinically useful biomarkers.

View Article and Find Full Text PDF

This study aimed to investigate the topological properties of brain functional networks in patients with tinnitus of varying durations. A total of 51 tinnitus patients (divided into recent-onset tinnitus (ROT) and persistent tinnitus (PT) groups) and 27 healthy controls (HC) were recruited. All participants underwent resting-state functional MRI and audiological assessments.

View Article and Find Full Text PDF

Approximately 15%-20% of school-aged children suffer from mathematics learning difficulties (MLD). Most children with developmental dyscalculia (DD) or MLD also have comorbid cognitive deficits. Recent literature suggests that research should focus on uncovering the neural underpinnings of MLD across more inclusive samples, rather than limiting studies to pure cases of DD or MLD with highly stringent inclusion criteria.

View Article and Find Full Text PDF

The origins of resting-state functional MRI (rsfMRI) signal fluctuations remain debated. Recent evidence shows coupling between global cortical rsfMRI signals and cerebrospinal fluid inflow in the fourth ventricle, increasing during sleep and decreasing with Alzheimer's disease (AD) progression, potentially reflecting brain clearance mechanisms. However, the existence of more complex brain-ventricle coupling modes and their relationship to cognitive decline remains unexplored.

View Article and Find Full Text PDF

Atypical face processing is commonly reported in autism. Its neural correlates have been explored extensively across single neuroimaging modalities within key regions of the face processing network, such as the fusiform gyrus (FFG). Nonetheless, it is poorly understood how variation in brain anatomy and function jointly impacts face processing and social functioning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!