Noncommutative phase-space Lotka-Volterra dynamics: The quantum analog.

Phys Rev E

Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal.

Published: August 2022

The Lotka-Volterra (LV) dynamics is investigated in the framework of the Weyl-Wigner (WW) quantum mechanics extended to one-dimensional Hamiltonian systems, H(x,k) constrained by the ∂^{2}H/∂x∂k=0 condition. Supported by the Heisenberg-Weyl noncommutative algebra, where [x,k]=i, the canonical variables x and k are interpreted in terms of the LV variables, y=e^{-x} and z=e^{-k}, eventually associated with the number of individuals in a closed competitive dynamics: the so-called prey-predator system. The WW framework provides the ground for identifying how classical and quantum evolution coexist at different scales and for quantifying quantum analog effects. Through the results from the associated Wigner currents, (non-)Liouvillian and stationary properties are described for thermodynamic and Gaussian quantum ensembles in order to account for the corrections due to quantum features over the classical phase-space pattern yielded by the Hamiltonian description of the LV dynamics. In particular, for Gaussian statistical ensembles, the Wigner flow framework provides the exact profile for the quantum modifications over the classical LV phase-space trajectories so that Gaussian quantum ensembles can be interpreted as an adequate Hilbert space state configuration for comparing quantum and classical regimes. The generality of the framework developed here extends the boundaries of the understanding of quantumlike effects on competitive microscopical biosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.106.024202DOI Listing

Publication Analysis

Top Keywords

quantum
9
lotka-volterra dynamics
8
quantum analog
8
gaussian quantum
8
quantum ensembles
8
classical phase-space
8
noncommutative phase-space
4
phase-space lotka-volterra
4
dynamics
4
dynamics quantum
4

Similar Publications

The quantum transition state framework was developed to calculate the reaction path-resolved scattering matrix for atom-diatom reactions in hyperspherical (APH) coordinates. This approach allows for simply and directly calculating the reaction path-resolved scattering matrix, especially when the encircling reaction path is negligible. It could be used to determine the reactivities of specific pathways in a chemical reaction, providing insights into phenomena such as geometric phase effects.

View Article and Find Full Text PDF

Controlled Introduction of sp3 Quantum Defects in Fluorescent Carbon Nanotubes by Mechanochemistry.

Angew Chem Int Ed Engl

January 2025

Ruhr-Universität Bochum: Ruhr-Universitat Bochum, Inorganic Chemistry, Universitaetsstrasse 150, 44801, Bochum, GERMANY.

Precise control over low-dimensional materials holds an immense potential for their applications in sensing, imaging and information processing. The controlled introduction of sp3 quantum defects (color centers) can be used to tailor the optoelectronic properties of single-walled carbon nanotubes (SWCNTs) in the tissue transparency (> 800 nm) and the telecommunication window. However, an uncontrolled functionalization of SWCNTs with defects leads to a loss of the NIR fluorescence.

View Article and Find Full Text PDF

Smartphone-based non-invasive detection of salivary uric acid based on the fluorescence quenching of gleditsia sinensis carbon dots.

Mikrochim Acta

January 2025

Guizhou Province, Qianzhi Mingguang Soaphorn Rice Processing Base, Zhijin County, Maochang Town, Bijie CityBijie City, 552103, China.

A smartphone-based non-invasive method was developed for salivary uric acid detection using Gleditsia Sinensis carbon dots (GS-CDs). The GS-CDs synthesized by the one-pot hydrothermal method emitted blue fluorescence at a maximum excitation wavelength of 350 nm and had good fluorescence stability in the presence of different ions, while showing selectivity to uric acid solution. The ability of uric acid (UA) to quench the fluorescent substances present in the GS-CDs, was confirmed through HPLC-FLD and LC-MS, FTIR and XPS.

View Article and Find Full Text PDF

Structural and theoretical studies of amantadinium fenamates.

Acta Crystallogr B Struct Sci Cryst Eng Mater

February 2025

Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, Wrocław, 50-556, Poland.

Two new crystals of amantadinium salts were obtained from fenamic and tolfenamic acid. The salt of fenamic acid is a model compound for interaction analysis, while amantadinium tolfenamate is a composition of a drug used in the treatment of symptoms of Parkinsonism and as a nonsteroidal anti-inflammatory drug. The crystal structures were studied and a theoretical analysis of the hydrogen bonds and weak interactions was carried out using quantum theory of atoms in molecules (QTAIM) and non-covalent interaction (NCI) methods.

View Article and Find Full Text PDF

Photoelasticity of crystals with the scheelite structure: quantum mechanical calculations.

Acta Crystallogr B Struct Sci Cryst Eng Mater

February 2025

Faculty of Electrical Engineering, Czestochowa University of Technology, 17 Al. Armii Krajowej, Częstochowa, PL-42200, Poland.

We report a complete set of elastic, piezooptic and photoelastic tensor constants of scheelite crystals CaMoO, BaMoO, BaWO and PbWO determined by density functional theory (DFT) calculations using the quantum chemical software package CRYSTAL17. The modulation parameter, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!