Linear and nonlinear characteristics of electrostatic waves are studied in a magnetized plasma consisting of spin-up (n_{↑}) and spin-down (n_{↓}) state populations with uniformly distributed static ions in the background. The linear analysis shows the existence of four modes. One of these modes, termed the separated spin electron cyclotron wave, is found to be due to the separated spin populations. The Zakharov-Kuznetsov equation is derived by the reductive perturbation technique. The instability growth rate γ is obtained from the same equation. It is observed that the magnetized spin quantum plasma admits rarefactive soliton with constant amplitude but increasing width with the increasing strength of the applied magnetic field. It has also been observed that the amplitude of soliton decreases and its width increases with the increasing values of polarization ratio κ. The unstable region expands with the increase in polarization ratio and contracts with the increased plasma number density and magnetic-field strength. The (growth rate) γ of instability reduces by increasing the κ and is increasing when the density of the plasma and the strength of the magnetic field increasing. The model developed in this work finds its scope in studying degenerate electron gas and astrophysical systems such as pulsar magnetosphere and neutron stars.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.106.025206 | DOI Listing |
ACS Nano
January 2025
Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland.
High-precision molecular manipulation techniques are used to control the distance between radical molecules on superconductors. Our results show that the molecules can host single electrons with a spin 1/2. By changing the distance between tip and sample, a quantum phase transition from the singlet to doublet ground state can be induced.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK.
A theory of singlet fission in carotenoid dimers is presented which aims to explain the mechanism behind the creation of two uncorrelated triplets. Following the excitation of a carotenoid chain "bright" B+u state, there is ultrafast internal conversion to the intrachain "dark" 1B-u triplet-pair state. This strongly exchange-coupled state evolves into a pair of triplets on separate chains and spin-decoheres to form a pair of single, unentangled triplets, corresponding to complete singlet fission.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0299, United States.
A spin valve represents a well-established device concept in magnetic memory technologies, whose functionality is determined by electron transmission, controlled by the relative alignment of magnetic moments of the two ferromagnetic layers. Recently, the advent of valleytronics has conceptualized a valley spin valve (VSV)─a device that utilizes the valley degree of freedom and spin-valley locking to achieve a similar valve effect without relying on magnetism. In this study, we propose a nonvolatile VSV (-VSV) based on a two-dimensional (2D) ferroelectric semiconductor where resistance of -VSV is controlled by a ferroelectric domain wall between two uniformly polarized domains.
View Article and Find Full Text PDFPulsed Dipolar ESR Spectroscopy (PDS) is a uniquely powerful technique to characterize the structural property of intrinsically disordered proteins (IDPs) and polymers and the conformational evolution of IDPs and polymers, e.g. during assembly, by offering the probability distribution of segment end-to-end distances.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
The pseudogap phenomena have been a long-standing mystery of the cuprate high-temperature superconductors. The pseudogap in the electron-doped cuprates has been attributed to band folding due to antiferromagnetic (AFM) long-range order or short-range correlation. We performed an angle-resolved photoemission spectroscopy study of the electron-doped cuprates PrLaCeCuO showing spin-glass, disordered AFM behaviors, and superconductivity at low temperatures and, by measurements with fine momentum cuts, found that the gap opens on the unfolded Fermi surface rather than the AFM Brillouin zone boundary.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!