We perform a quantitative analysis of Monte Carlo simulation results of phase separation in ternary blends upon evaporation of one component. Specifically, we calculate the average domain size and plot it as a function of simulation time to compute the exponent of the obtained power law. We compare and discuss results obtained by two different methods, for three different models: two-dimensional (2D) binary-state model (Ising model), 2D ternary-state model with and without evaporation. For the ternary-state models, we study additionally the dependence of the domain growth on concentration, temperature and initial composition. We reproduce the expected 1/3 exponent for the Ising model, while for the ternary-state model without evaporation and for the one with evaporation we obtain lower values of the exponent. It turns out that phase separation patterns that can form in this type of systems are complex. The obtained quantitative results give valuable insights towards devising computable theoretical estimations of size effects on morphologies as they occur in the context of organic solar cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.106.025306 | DOI Listing |
JMIR Res Protoc
January 2025
National Radiotherapy, Oncology and Nuclear Medicine Centre, Korle-bu Teaching Hospital, Accra, Ghana.
Background: Cancer is a leading cause of global mortality, accounting for nearly 10 million deaths in 2020. This is projected to increase by more than 60% by 2040, particularly in low- and middle-income countries. Yet, palliative and psychosocial oncology care is very limited in these countries.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50018 Zaragoza, Spain.
Rejuvenation and memory, long considered the distinguishing features of spin glasses, have recently been proven to result from the growth of multiple length scales. This insight, enabled by simulations on the Janus II supercomputer, has opened the door to a quantitative analysis. We combine numerical simulations with comparable experiments to introduce two coefficients that quantify memory.
View Article and Find Full Text PDFJMIR Res Protoc
January 2025
Department of Women's and Children's Health, Participatory eHealth and Health Data Research Group, Uppsala University, Uppsala, Sweden.
Background: Digital health interventions have become increasingly popular in recent years, expanding the possibilities for treatment for various patient groups. In clinical research, while the design of the intervention receives close attention, challenges with research participant engagement and retention persist. This may be partially due to the use of digital health platforms, which may lack adequacy for participants.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
ISGlobal, Barcelona, Spain.
Background: The Lihir Islands of Papua New Guinea, located in an area with high burden of malaria and hosting a large mining operation, offer a unique opportunity to study transmission. There, we investigated human and vector factors influencing malaria transmission.
Methods: In 2019, a cross-sectional study was conducted on 2,914 individuals assessing malaria prevalence through rapid diagnostic tests (RDT), microscopy, and quantitative PCR (qPCR).
PLoS One
January 2025
Tokyo Metropolitan University, Hachioji, Japan.
Objective: The purpose of this study was to quantitatively measure the split-step skills of the world's top badminton players to clarify the characteristics underlying these skills when moving into the forehand position in the rear court.
Methods: We analyzed the four best ranking players (1st to 4th) in the men's singles competition at the World Badminton Federation (BWF) World Championships 2023, a world tournament whose match videos are available online. Analysis 1 was conducted to determine the location of the players' feet on the court when performing a split-step while moving to the forehand rear court, as well as the width of the stance and the reaction time from that stance to taking the first step.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!