Equilibrium fluctuations in mean-field disordered models.

Phys Rev E

Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France.

Published: August 2022

Mean-field models of glasses that present a random first order transition exhibit highly nontrivial fluctuations. Building on previous studies that focused on the critical scaling regime, we here obtain a fully quantitative framework for all equilibrium conditions. By means of the replica method we evaluate Gaussian fluctuations of the overlaps around the thermodynamic limit, decomposing them in thermal fluctuations inside each state and heterogeneous fluctuations between different states. We first test and compare our analytical results with numerical simulation results for the p-spin spherical model and the random orthogonal model, and then analyze the random Lorentz gas. In all cases, a strong quantitative agreement is obtained. Our analysis thus provides a robust scheme for identifying the key finite-size (or finite-dimensional) corrections to the mean-field treatment of these paradigmatic glass models.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.106.024605DOI Listing

Publication Analysis

Top Keywords

equilibrium fluctuations
4
fluctuations mean-field
4
mean-field disordered
4
disordered models
4
models mean-field
4
mean-field models
4
models glasses
4
glasses random
4
random order
4
order transition
4

Similar Publications

Although deterministic analysis can provide initial insights into slope stability, there is no way to reflect the true distribution of soil properties within a slope. To further investigate the effects of the spatial variability of soil properties on the stability and failure mechanism of slope under different foundation types, this study develops a framework combining simple limit equilibrium method (LEM), Monte Carlo Simulation (MCS), and random field to incorporate these factors into slope probabilistic stability analysis. The slope models of two typical foundations (e.

View Article and Find Full Text PDF

Background: Cadaverine and hydrocinnamic acid are frequent metabolites in inflamed periodontal areas. Their role as a metabolite for plant growth inhibition has been established, but their relevance in humans has yet to be determined. Moreover, Vascular endothelial growth factor (VGEF) is a consistent growth factor in neo-angiogenesis in periodontal regeneration.

View Article and Find Full Text PDF

The acceleration of urbanization has significantly exacerbated climate change due to excessive anthropogenic carbon emissions and air pollutants. Based on data from 281 prefecture-level cities in China between 2015 and 2021. The spatiotemporal co-evolution of urban carbon emissions and air pollutants was analyzed through map visualization and kernel density estimation, revealing non-equilibrium and heterogeneity.

View Article and Find Full Text PDF

We present a complete framework of stochastic thermodynamics for a single-mode linear optical cavity driven on resonance. We first show that the steady-state intracavity field follows the equilibrium Boltzmann distribution. The effective temperature is given by the noise variance, and the equilibration rate is the dissipation rate.

View Article and Find Full Text PDF

Spatiotemporal pattern formation of membranes induced by surface molecular binding/unbinding.

Soft Matter

January 2025

Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan.

Nonequilibrium membrane pattern formation is studied using meshless membrane simulation. We consider that molecules bind to either surface of a bilayer membrane and move to the opposite leaflet by flip-flop. When binding does not modify the membrane properties and the transfer rates among the three states are cyclically symmetric, the membrane exhibits spiral-wave and homogeneous-cycling modes at high and low binding rates, respectively, as in an off-lattice cyclic Potts model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!