Background: Rotator cuff (RC) tendinopathy is a common shoulder pain condition. Extracorporeal shockwave therapy (ESWT) and hyaluronic acid peritendinous injection are viable treatment options for RC tendinopathy. The aim of this study is to evaluate the response in two different therapeutic rehabilitative approaches, the combined treatment ESWT plus hyaluronic acid injections (E + Hy) compared to ESWT alone (ESWT-al), in a cohort of patients with RC tendinopathy according to gender differences.
Methods: This is a retrospective longitudinal cohort study of patients with painful RC tendinopathy. Patients that had received a clinical evaluation, a shoulder ultra sound examination, as well as the Shoulder Pain and Disability Index (SPADI) questionnaire, and the Numerical Rating Scale (NRS) for pain at baseline, 1-month (T1) and 2-month follow-ups (T2) were included.
Results: Medical records of 53 patients were analyzed. In the comparison between baseline to T1 and similarly from baseline to T2, a statistically significant reduction has been reported in the NRS (p < 0.001) and in the SPADI (p < 0.001) in the entire study group. At T1, patients in the E + Hy compared to ESWT-al group, showed a slight but statistically significant reductions in both NRS and SPADI score, while these changes were more evident at T2 (p < 0.001). Interestingly, a gender dimorphism in NRS and in SPADI was found, with female patients that apparently responded better to the combined E + Hy compared to ESWT-al approach.
Conclusion: This retrospective cohort study suggests that the combination of ESWT plus HyA injections seems to be more effective than ESWT alone in RC tendinopathy in both genders. Moreover, in ESWT alone treatment, male patients reported better outcomes compared to females. However, further randomized controlled trials should be structured to confirm and enforce these conclusions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9479346 | PMC |
http://dx.doi.org/10.1186/s12891-022-05819-3 | DOI Listing |
ACS Appl Bio Mater
January 2025
Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran.
Although 3D printing is becoming a dominant technique for scaffold preparation in bone tissue engineering (TE), developing hydrogel-based ink compositions with bioactive and self-healing properties remains a challenge. This research focuses on developing a bone scaffold based on a composite hydrogel, which maintains its self-healing properties after incorporating bioactive glass and is 3D-printable. The plain hydrogel ink was synthesized using natural polymers of 1 wt % N-carboxyethyl chitosan, 2 wt % hyaluronic acid aldehyde, 0.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
Background: Developing carrier-free nanomedicines via self-assembly of two antitumor drug molecules is a potential strategy for enhancing the combination treatment of tumors. Similarly, conventional chemotherapy combined with photodynamic therapy may synergistically improve the antitumor effect while minimizing the adverse reactions associated with antitumor treatment. Hyaluronic acid (HA) can bind to overexpressed HA receptors on the tumor cell surface, increasing cell internalization and resulting in good tumor-targeting properties.
View Article and Find Full Text PDFKidney explant cultures are traditionally carried out at air-liquid interfaces, which disrupts 3D tissue structure and limits interpretation of developmental data. To overcome this limitation, we developed a 3D culture technique using hydrogel embedding to capture morphogenesis in real time. We show that 3D culture better approximates -like niche spacing and dynamic tubule tip rearrangement, as well as -like presentation of branching defects under perturbations to glial cell-derived neurotrophic factor (GDNF)- RE arranged during T ransfection (RET) tyrosine kinase signaling.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-694 Barco, Guimarães, Portugal.
Nervous system disorders are characterized by a progressive loss of function and structure of neurons that ultimately leads to a decline in cognitive and motor functions. In this study, we used interfacial polyelectrolyte complexation (IPC) to produce fibers for neural tissue regeneration. IPC is a processing method that allows spinning of sensitive biopolymers.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.
Objective: This study explores whether hyaluronic acid (HA) of different molecular weights and collagen, given their role in tendon extracellular matrix maintenance, have a synergistic effect on human tendon-derived cells, with the aim to improve the treatment of tendinopathy.
Material: Human monocytes (CRL-9855™) and primary Achilles tendon-derived cells.
Treatment: The collagen/HA ratio was based on the formulation of the commercial food supplement TendoGenIAL™.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!