An early origin of iron-sulfur cluster biosynthesis machineries before Earth oxygenation.

Nat Ecol Evol

Department of Microbiology, Unit Stress Adaptation and Metabolism in Enterobacteria, Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Paris, France.

Published: October 2022

Iron-sulfur (Fe-S) clusters are ubiquitous cofactors essential for life. It is largely thought that the emergence of oxygenic photosynthesis and progressive oxygenation of the atmosphere led to the origin of multiprotein machineries (ISC, NIF and SUF) assisting Fe-S cluster synthesis in the presence of oxidative stress and shortage of bioavailable iron. However, previous analyses have left unclear the origin and evolution of these systems. Here, we combine exhaustive homology searches with genomic context analysis and phylogeny to precisely identify Fe-S cluster biogenesis systems in over 10,000 archaeal and bacterial genomes. We highlight the existence of two additional and clearly distinct 'minimal' Fe-S cluster assembly machineries, MIS (minimal iron-sulfur) and SMS (SUF-like minimal system), which we infer in the last universal common ancestor (LUCA) and we experimentally validate SMS as a bona fide Fe-S cluster biogenesis system. These ancestral systems were kept in archaea whereas they went through stepwise complexification in bacteria to incorporate additional functions for higher Fe-S cluster synthesis efficiency leading to SUF, ISC and NIF. Horizontal gene transfers and losses then shaped the current distribution of these systems, driving ecological adaptations such as the emergence of aerobic lifestyles in archaea. Our results show that dedicated machineries were in place early in evolution to assist Fe-S cluster biogenesis and that their origin is not directly linked to Earth oxygenation.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41559-022-01857-1DOI Listing

Publication Analysis

Top Keywords

fe-s cluster
24
cluster biogenesis
12
earth oxygenation
8
isc nif
8
cluster synthesis
8
cluster
7
fe-s
7
early origin
4
origin iron-sulfur
4
iron-sulfur cluster
4

Similar Publications

Resynthesis of Damaged Fe-S Cluster Proteins Protects Against Oxidative Stress in the Absence of Mn-Superoxide Dismutase.

J Fungi (Basel)

November 2024

Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.

Article Synopsis
  • Manganese superoxide dismutase (Mn-SOD) is vital for maintaining mitochondrial function, and its absence heightens sensitivity to oxidative stress and iron limitation.
  • Deleting the Mn-SOD gene resulted in increased vulnerability to oxidative damage and made fungal spores more susceptible to destruction by human immune cells.
  • Analysis revealed that this gene deletion notably altered the oxidative stress response, impacting the regulation of genes related to iron management and protein synthesis in response to stress.
View Article and Find Full Text PDF

Influence of calcium carbonate on ferrihydrite bio-transformation and associated arsenic mobilization/redistribution.

Environ Pollut

December 2024

State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.

The sulfate-reducing bacteria (SRB)-induced ferrihydrite transformation is an important cause for arsenic (As) contamination in the aquifer near mining area. Calcium carbonate (CaCO) is widespread and has the potential of regulating As fate directly or indirectly. However, the influence of CaCO on ferrihydrite transformation and the associated As mobilization/redistribution in SRB-containing environments remains unclear.

View Article and Find Full Text PDF

Low expression of Frataxin might contribute to diabetic peripheral neuropathy in a mouse model.

Biochem Biophys Res Commun

December 2024

Yancheng Clinical College, Xuzhou Medical University, Yancheng, 224000, PR China. Electronic address:

Diabetes is one of the most prevalent metabolic disorders, and its incidence has been experiencing a steady annual rise in recent years. Diabetic peripheral neuropathy (DPN) represents the most frequent adverse complication, exerting a profound impact on the quality of life for those suffering from diabetes. The etiology of DPN is complex, including impaired mitochondrial function.

View Article and Find Full Text PDF

Glutathione (GSH) is an abundant thiol-containing tripeptide that functions in redox homeostasis, protein folding, and iron metabolism. In Saccharomyces cerevisiae, GSH depletion leads to increased sensitivity to oxidants and other toxic compounds, disruption of Fe-S cluster biogenesis, and eventually cell death. GSH pools are supplied by intracellular biosynthesis and GSH import from the extracellular environment.

View Article and Find Full Text PDF

Two aconitase isoforms are present in mammalian cells: the mitochondrial aconitase (ACO2) that catalyzes the reversible isomerization of citrate to isocitrate in the citric acid cycle, and the bifunctional cytosolic enzyme (ACO1), which also plays a role as an RNA-binding protein in the regulation of intracellular iron metabolism. Aconitase activities in the different subcellular compartments can be selectively inactivated by different genetic defects, iron depletion, and oxidative or nitrative stress. Aconitase contains a [4Fe-4S] cluster that is essential for substrate coordination and catalysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!