A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A robust spike sorting method based on the joint optimization of linear discrimination analysis and density peaks. | LitMetric

A robust spike sorting method based on the joint optimization of linear discrimination analysis and density peaks.

Sci Rep

Qiushi Academy for Advanced Studies, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.

Published: September 2022

Spike sorting is a fundamental step in extracting single-unit activity from neural ensemble recordings, which play an important role in basic neuroscience and neurotechnologies. A few algorithms have been applied in spike sorting. However, when noise level or waveform similarity becomes relatively high, their robustness still faces a big challenge. In this study, we propose a spike sorting method combining Linear Discriminant Analysis (LDA) and Density Peaks (DP) for feature extraction and clustering. Relying on the joint optimization of LDA and DP: DP provides more accurate classification labels for LDA, LDA extracts more discriminative features to cluster for DP, and the algorithm achieves high performance after iteration. We first compared the proposed LDA-DP algorithm with several algorithms on one publicly available simulated dataset and one real rodent neural dataset with different noise levels. We further demonstrated the performance of the LDA-DP method on a real neural dataset from non-human primates with more complex distribution characteristics. The results show that our LDA-DP algorithm extracts a more discriminative feature subspace and achieves better cluster quality than previously established methods in both simulated and real data. Especially in the neural recordings with high noise levels or waveform similarity, the LDA-DP still yields a robust performance with automatic detection of the number of clusters. The proposed LDA-DP algorithm achieved high sorting accuracy and robustness to noise, which offers a promising tool for spike sorting and facilitates the following analysis of neural population activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477889PMC
http://dx.doi.org/10.1038/s41598-022-19771-8DOI Listing

Publication Analysis

Top Keywords

spike sorting
20
lda-dp algorithm
12
sorting method
8
joint optimization
8
density peaks
8
waveform similarity
8
extracts discriminative
8
proposed lda-dp
8
neural dataset
8
noise levels
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!