Interaction between devices, people, and the Internet has given birth to a new digital communication model, the internet of things (IoT). The integration of smart devices to constitute a network introduces many security challenges. These connected devices have created a security blind spot, where cybercriminals can easily launch attacks to compromise the devices using malware proliferation techniques. Therefore, malware detection is a lifeline for securing IoT devices against cyberattacks. This study addresses the challenge of malware detection in IoT devices by proposing a new CNN-based IoT malware detection architecture (iMDA). The proposed iMDA is modular in design that incorporates multiple feature learning schemes in blocks including (1) edge exploration and smoothing, (2) multi-path dilated convolutional operations, and (3) channel squeezing and boosting in CNN to learn a diverse set of features. The local structural variations within malware classes are learned by Edge and smoothing operations implemented in the split-transform-merge (STM) block. The multi-path dilated convolutional operation is used to recognize the global structure of malware patterns. At the same time, channel squeezing and merging helped to regulate complexity and get diverse feature maps. The performance of the proposed iMDA is evaluated on a benchmark IoT dataset and compared with several state-of-the CNN architectures. The proposed iMDA shows promising malware detection capacity by achieving accuracy: 97.93%, F1-Score: 0.9394, precision: 0.9864, MCC: 0. 8796, recall: 0.8873, AUC-PR: 0.9689 and AUC-ROC: 0.9938. The strong discrimination capacity suggests that iMDA may be extended for the android-based malware detection and IoT Elf files compositely in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477830PMC
http://dx.doi.org/10.1038/s41598-022-18936-9DOI Listing

Publication Analysis

Top Keywords

malware detection
24
proposed imda
12
iot malware
8
detection architecture
8
malware
8
iot devices
8
detection iot
8
multi-path dilated
8
dilated convolutional
8
channel squeezing
8

Similar Publications

To combat dynamically loaded code in anti-emulated environments, DLCDroid is an Android app analysis framework. DL-CDroid uses the reflection API to effectively identify information leaks due to dynamically loaded code within malicious apps, incorporating static and dynamic analysis techniques. The Dynamically Loaded Code (DLC) technique employs Java features to allow Android apps to dynamically expand their functionality at runtime.

View Article and Find Full Text PDF

While deep learning techniques have been extensively employed in malware detection, there is a notable challenge in effectively embedding malware features. Current neural network methods primarily capture superficial characteristics, lacking in-depth semantic exploration of functions and failing to preserve structural information at the file level. Motivated by the aforementioned challenges, this paper introduces MalHAPGNN, a novel framework for malware detection that leverages a hierarchical attention pooling graph neural network based on enhanced call graphs.

View Article and Find Full Text PDF

Searching to extrapolate embedding for out-of-graph node representation learning.

Neural Netw

January 2025

Department of Electronic Engineering, Tsinghua University, Beijing, China. Electronic address:

Out-of-graph node representation learning aims at learning about newly arrived nodes for a dynamic graph. It has wide applications ranging from community detection, recommendation system to malware detection. Although existing methods can be adapted for out-of-graph node representation learning, real-world challenges such as fixed in-graph node embedding and data diversity essentially limit the performance of these methods.

View Article and Find Full Text PDF

Android malware detection remains a critical issue for mobile security. Cybercriminals target Android since it is the most popular smartphone operating system (OS). Malware detection, analysis, and classification have become diverse research areas.

View Article and Find Full Text PDF

In recent years, significant research has been directed towards the taxonomy of malware variants. Nevertheless, certain challenges persist, including the inadequate accuracy of sample classification within similar malware families, elevated false-negative rates, and significant processing time and resource consumption. Malware developers have effectively evaded signature-based detection methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!