A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Classification of Level of Consciousness in a Neurological ICU Using Physiological Data. | LitMetric

Background: Impaired consciousness is common in intensive care unit (ICU) patients, and an individual's degree of consciousness is crucial to determining their care and prognosis. However, there are no methods that continuously monitor consciousness and alert clinicians to changes. We investigated the use of physiological signals collected in the ICU to classify levels of consciousness in critically ill patients.

Methods: We studied 61 patients with subarachnoid hemorrhage (SAH) and 178 patients with intracerebral hemorrhage (ICH) from the neurological ICU at Columbia University Medical Center in a retrospective observational study of prospectively collected data. The level of consciousness was determined on the basis of neurological examination and mapped to comatose, vegetative state or unresponsive wakefulness syndrome (VS/UWS), minimally conscious minus state (MCS-), and command following. For each physiological signal, we extracted time-series features and performed classification using extreme gradient boosting on multiple clinically relevant tasks across subsets of physiological signals. We applied this approach independently on both SAH and ICH patient groups for three sets of variables: (1) a minimal set common to most hospital patients (e.g., heart rate), (2) variables available in most ICUs (e.g., body temperature), and (3) an extended set recorded mainly in neurological ICUs (absent for the ICH patient group; e.g., brain temperature).

Results: On the commonly performed classification task of VS/UWS versus MCS-, we achieved an area under the receiver operating characteristic curve (AUROC) in the SAH patient group of 0.72 (sensitivity 82%, specificity 57%; 95% confidence interval [CI] 0.63-0.81) using the extended set, 0.69 (sensitivity 83%, specificity 51%; 95% CI 0.59-0.78) on the variable set available in most ICUs, and 0.69 (sensitivity 56%, specificity 78%; 95% CI 0.60-0.78) on the minimal set. In the ICH patient group, AUROC was 0.64 (sensitivity 56%, specificity 65%; 95% CI 0.55-0.74) using the minimal set and 0.61 (sensitivity 50%, specificity 80%; 95% CI 0.51-0.71) using the variables available in most ICUs.

Conclusions: We find that physiological signals can be used to classify states of consciousness for patients in the ICU. Building on this with intraday assessments and increasing sensitivity and specificity may enable alarm systems that alert physicians to changes in consciousness and frequent monitoring of consciousness throughout the day, both of which may improve patient care and outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9935697PMC
http://dx.doi.org/10.1007/s12028-022-01586-0DOI Listing

Publication Analysis

Top Keywords

physiological signals
12
ich patient
12
minimal set
12
patient group
12
consciousness
9
level consciousness
8
neurological icu
8
performed classification
8
extended set
8
069 sensitivity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!