Evasion of Cas9 toxicity to develop an efficient genome editing system and its application to increase ethanol yield in Fusarium venenatum TB01.

Appl Microbiol Biotechnol

Tianjin Key Laboratory for Industrial Biological, Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.

Published: October 2022

The clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas9) system is a powerful genome editing tool that has been successfully established in some filamentous fungi due to its high flexibility and efficiency. However, the potential toxicity of Cas9 restricts the further popularization and application of this system to some degree. The AMA1 element is a self-replicator derived from Aspergillus nidulans, and its derived vectors can be readily lost without selection. In this study, we eliminated Cas9 toxicity to Fusarium venenatum TB01 based on 100% AMA1-based Cas9 expression vector loss. Meanwhile, two available endogenous Pol III promoters (FvU6 and Fv5SrRNA) used for sgRNA expression of the CRISPR/Cas9 system were excavated. Compared to FvU6 (40-50%), Fv5SrRNA exhibited higher single-gene editing efficiency (> 85%), and the efficiency of simultaneous editing of the two genes using Fv5SrRNA was over 75%. Based on this system, a butanediol dehydrogenase encoding gene FvBDH was deleted, and the ethanol yield in variants increased by 52% compared with that of the wild-type. The highly efficient CRISPR/Cas9 system developed here lays the technical foundation for advancing the development of F. venenatum TB01 through metabolic engineering, and the obtained FvBDH gene-edited variants have the potential to simultaneously produce mycoprotein and ethanol by further gene modification and fermentation process optimization in the future.Key points• Cas9 toxicity disappeared and DNA-free gene-edited strains obtained after vector loss• Promoter Fv5SrRNA conferred TB01 higher gene editing efficiency than FvU6•Deletion of the FvBDH gene resulted in a 52% increase in ethanol yield.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-022-12178-5DOI Listing

Publication Analysis

Top Keywords

cas9 toxicity
12
ethanol yield
12
venenatum tb01
12
crispr/cas9 system
12
genome editing
8
increase ethanol
8
fusarium venenatum
8
editing efficiency
8
system
6
editing
5

Similar Publications

Novel role of FTO in regulation of gut-brain communication via -produced hydrogen sulfide under arsenic exposure.

Gut Microbes

December 2025

Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.

Fat mass and obesity-associated protein (FTO) is the key demethylase that reverses the abnormally altered N6-methyladenosine (m6A) modification in eukaryotic cells under environmental pollutants exposure. Arsenic is an environmental metalloid and can cause severe symptoms in human mainly through drinking water. However, there is no specific treatment for its toxic effects due to the uncovered mechanisms.

View Article and Find Full Text PDF

Recent advances in engineering non-native microorganisms for poly(3-hydroxybutyrate) production.

World J Microbiol Biotechnol

January 2025

Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.

Poly(3-hydroxybutyrate) (PHB) is a biodegradable polymer that belongs to a group of polymers called polyhydroxyalkanoates (PHAs). PHB can be synthesized from renewable resources, making it a promising alternative to petroleum-derived plastics. It is also considered non-toxic, biodegradable, and biocompatible, which makes it suitable for various applications in the medicine and biomedicine.

View Article and Find Full Text PDF

FLT3 is genetically essential for ITD-mutated leukemic stem cells but dispensable for human hematopoietic stem cells.

Blood

January 2025

1Princess Margaret Cancer Centre, University Health Network; Toronto, ON M5G 1L7, Canada 14Department of Molecular Genetics, University of Toronto; Toronto, ON, Canada, Canada.

Leukemic stem cells (LSCs) fuel acute myeloid leukemia (AML) growth and relapse, but therapies tailored towards eradicating LSCs without harming normal hematopoietic stem cells (HSCs) are lacking. FLT3 is considered an important therapeutic target due to frequent mutation in AML and association with relapse. However, there has been limited clinical success with FLT3 drug targeting, suggesting either that FLT3 is not a vulnerability in LSC, or that more potent inhibition is required, a scenario where HSC toxicity could become limiting.

View Article and Find Full Text PDF

Optimizing genome editing efficiency in via a CRISPR/Cas9n-mediated editing system.

Appl Environ Microbiol

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China.

is an important bioresource to produce various antibacterial natural products, however, the time-consuming and labor-intensive genome editing toolkits hindered the construction and application of engineered strains, and this study aimed to establish an efficient CRISPR/Cas9n genome editing system in . Initially, the CRISPR/Cas9-mediated editing tool was employed to replace those awkward genome editing tools that relied on homologous recombination, while the off-target Cas9 exhibited high toxicity to Sf01. Therefore, the nickase mutation D10A, high-fidelity mutations including N497A, R661A, Q695A, and Q926A, and thiostrepton-induced promotor P were incorporated into the Cas9 expression cassette, which reduced its toxicity.

View Article and Find Full Text PDF

A novel micelleplex for tumour-targeted delivery of CRISPR-Cas9 against KRAS-mutated lung cancer.

Nanoscale

January 2025

Ludwig-Maximilians-University, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Butenandtstraße 5-13, Munich, 81377, Germany.

CRISPR-Cas9 has emerged as a highly effective and customizable genome editing tool, holding significant promise for the treatment of KRAS mutations in lung cancer. In this study, we introduce a novel micelleplex, named C14-PEI, designed to co-deliver Cas9 mRNA and sgRNA efficiently to excise the mutated KRAS allele in lung cancer cells. C14-PEI is synthesised from 1,2-epoxytetradecane and branched PEI 600 Da a ring-opening reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!