This study extends the accurate and transferable molecular-orbital-based machine learning (MOB-ML) approach to modeling the contribution of electron correlation to dipole moments at the cost of Hartree-Fock computations. A MOB pairwise decomposition of the correlation part of the dipole moment is applied, and these pair dipole moments could be further regressed as a universal function of MOs. The dipole MOB features consist of the energy MOB features and their responses to electric fields. An interpretable and rotationally equivariant derivative kernel for Gaussian process regression (GPR) is introduced to learn the dipole moment more efficiently. The proposed problem setup, feature design, and ML algorithm are shown to provide highly accurate models for both dipole moments and energies on water and 14 small molecules. To demonstrate the ability of MOB-ML to function as generalized density-matrix functionals for molecular dipole moments and energies of organic molecules, we further apply the proposed MOB-ML approach to train and test the molecules from the QM9 dataset. The application of local scalable GPR with Gaussian mixture model unsupervised clustering GPR scales up MOB-ML to a large-data regime while retaining the prediction accuracy. In addition, compared with the literature results, MOB-ML provides the best test mean absolute errors of 4.21 mD and 0.045 kcal/mol for dipole moment and energy models, respectively, when training on 110 000 QM9 molecules. The excellent transferability of the resulting QM9 models is also illustrated by the accurate predictions for four different series of peptides.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0101280DOI Listing

Publication Analysis

Top Keywords

dipole moment
16
dipole moments
16
molecular dipole
8
rotationally equivariant
8
equivariant derivative
8
molecular-orbital-based machine
8
machine learning
8
mob-ml approach
8
dipole
8
correlation dipole
8

Similar Publications

Large Polarization Change Induced by Spin Crossover-Driven Fe(II) Ion Shuttling within a Tripodal Ligand.

J Am Chem Soc

January 2025

Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China.

The integration of spin crossover (SCO) magnetic switching and electric polarization properties can engender intriguing correlated magnetic and electric phenomena. However, achieving substantial SCO-induced polarization change through rational molecular design remains a formidable challenge. Herein, we present a polar Fe(II) compound that exhibits substantial polarization change in response to a thermally regulated low-spin ↔ high-spin transition.

View Article and Find Full Text PDF

An overcrowded ethylene composed of electron-donating anion, naphthoxide, and electron-accepting cation, acridinium, has been synthesized. It is in equilibrium between a folded conformer having a smaller permanent dipole moment with visible light absorption and a twisted conformer having a larger permanent dipole moment with NIR light absorption. The overcrowded ethylene shows multiple NIR chromisms, such as solvatochromism, thermochromism, mechanochromism, vapochromism, halochromism, and amphoteric electrochromisms, which are caused by the conformational change between folded and twisted conformers or by controlling the energy difference between the HOMO of the donor moiety and the LUMO of the acceptor moiety.

View Article and Find Full Text PDF

This study presents Born-Oppenheimer energies and transition dipole moments of the 36 lowest electronic states of the N2+ ion as a function of internuclear distance in the interval between 1.5 and 10 bohrs obtained in first-principles calculations. The electronic states are of the total electronic spin S = 1/2, 3/2, and 5/2, dissociating toward to the lowest four N(4S0) + N+(3P), N(2P0) + N+(3P), N(2D0) + N+(3P), and N(4S0) + N+(1D) dissociation limits.

View Article and Find Full Text PDF

Electric dipole moment of excited octupolar molecules: Potential qubit implementation.

J Chem Phys

January 2025

Volgograd State University, University Avenue 100, Volgograd 400062, Russia.

The first excited state of conjugated donor-acceptor molecules of C3 symmetry (octupolar molecules) is doubly degenerate. Such a doublet is known to be isomorphic to a spin 1/2. It is shown that a large electric dipole moment is associated with this spin.

View Article and Find Full Text PDF

Phthalate esters, frequently used as plasticizers in consumer products, raise concerns because of potential health effects. Using density functional theory (DFT) with BLYP and 6-311++G(d, p) basis sets, their properties, such as dipole moment, polarizability, proton affinity and ionization energy of phthalate esters are obtained. Reaction kinetics and thermodynamics of popular reagent ions like HO, NH, NO and O are computed to know the feasibility of the reactions with such ions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!