Prenatal exposure to titanium dioxide nanoparticles induces persistent neurobehavioral impairments in maternal mice that is associated with microbiota-gut-brain axis.

Food Chem Toxicol

Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, PR China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, PR China. Electronic address:

Published: November 2022

Gestational exposure to titanium dioxide nanoparticles (TiONPs) has been widely reported to have deleterious effects on the brain functions of offspring. However, little attention has been paid to the neurotoxic effects of TiONPs on maternal body after parturition. The pregnant mice were orally administrated with TiONPs at 150 mg/kg from gestational day 8-21. The potential effects of TiONPs on the neurobehaviors were evaluated at postnatal day 60. The gut microbiota, morphological alterations of intestine and brain, and other indicators that involved in gut-brain axis were all assessed to investigate the underlying mechanisms. The results demonstrated that exposure to TiONPs during pregnancy caused the persistent neurobehavioral impairments of maternal mice after delivery for 60 days, mainly including behavioural changes, pathological changes in hippocampus, cortex and intestine. Our data also showed that persistent dysfunction and tissue injuries were probably associated with the disruption of gut-brain axis, manifested by the shift in the composition of gut microbial community, alteration of Sstr1, inhibition of enteric neurons and reduction of diamine oxidase contents in maternal mice. These findings provide a novel insight that regulation of gut microecology may be an alternative strategy for the protection against the neurotoxicity of TiONPs in pregnant women.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2022.113402DOI Listing

Publication Analysis

Top Keywords

maternal mice
12
exposure titanium
8
titanium dioxide
8
dioxide nanoparticles
8
persistent neurobehavioral
8
neurobehavioral impairments
8
impairments maternal
8
effects tionps
8
gut-brain axis
8
tionps
6

Similar Publications

Thyroid hormones (TH) play a key role in fetal brain development. While severe thyroid dysfunction, has been shown to cause neurodevelopmental and reproductive disorders, the rising levels of TH-disruptors in the environment in the past few decades have increased the need to assess effects of subclinical (mild) TH insufficiency during gestation. Since embryos do not produce their own TH before mid-gestation, early development processes rely on maternal production.

View Article and Find Full Text PDF

Food allergies manifest as systemic or digestive allergic responses induced by food allergens, and their progression has been demonstrated to be intimately associated with the host's gut microbiota. Our preceding investigation has revealed that the probiotic strains CCFM1189 and CCFM1190 possess the capability to mitigate the symptoms of food allergy in mice. However, the underlying mechanisms and material foundations through which these probiotic strains exert their effects remain enigmatic.

View Article and Find Full Text PDF

Background: Angelman syndrome (AS), a severe neurodevelopmental disorder resulting from the loss of the maternal UBE3A gene, is marked by changes in the brain's white matter (WM). The extent of WM abnormalities seems to correlate with the severity of clinical symptoms, but these deficits are still poorly characterized or understood. This study provides the first large-scale measurement of WM volume reduction in children with AS.

View Article and Find Full Text PDF

Upregulated YTHDC1 mediates trophoblastic dysfunction inducing preterm birth in ART conceptions through enhanced RPL37 translation.

Cell Mol Life Sci

December 2024

The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, China.

Assisted reproductive technology (ART) pregnancies present a higher risk of singleton preterm birth than natural pregnancies, but the underlying molecular mechanism remains largely unknown. RNA mA modification is a key epigenetic mechanism regulating cellular function, but the role of mA modification, especially its "reader" YTHDC1, in preterm delivery remains undefined. To delineate the role and epigenetic mechanism of mA modification in ART preterm delivery, the effects of YTHDC1 on trophoblastic function were evaluated by CCK-8, EdU, Transwell, and flow cytometry analyses post its overexpression or knockdown.

View Article and Find Full Text PDF

Objective: Hypoxic-ischemic brain damage (HIBD) is a leading cause of neonatal mortality, resulting in brain injury and persistent seizures that can last into the late neonatal period and beyond. Effective treatments and interventions for infants affected by hypoxia-ischemia remain lacking. Clinical investigations have indicated an elevation of nuclear factor of activated T cells 5 (NFAT5) in whole blood from umbilical cords of severely affected HIBD infants with epilepsy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!