Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Currently, 60-80 % of litter is plastic, and almost 10 % ends up in the ocean directly or indirectly. Plastics often suffer from photooxidation producing microplastics and these microplastics derived from the breakdown of larger plastics are called secondary microplastics. These compounds simply cannot be extracted from the oceans, and once mixed, they enter the food chain and may have toxic effects. This work reviews the current existing information on the topic in the scientific literature. Then, the current plastic management strategies in the marine environment are analysed, with the objective of identifying possible needs and improvements from a sustainable point of view, and to define new approaches. Simultaneously, a material flows analysis in different media of the marine environment is carried out using system dynamics. A preliminary model of plastics mobilization into the ocean to other media of the marine environment (like sediments and biota) is developed and validated with the existing data from the previous steps of the work. This work expands the current knowledge on the plastics management, their transformations and accumulation in the marine environment and the harmful effects on it. Likewise, preliminary dynamic model of mobilization of plastics in the ocean is implemented, run, and validated. The developed model can be used to predict trends in the distribution of the plastics in the ocean with time. In addition, the most important reservoirs of plastics in the ocean can be observed. Although plastics undergo transformations in the marine environment, it is not a means of disposal since most of them are non-biodegradable. Most plastics accumulate on the seabed. The proportion of microplastics found in sediments is higher than that of macroplastics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.158745 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!