High-frequency oscillations (HFOs) are promising biomarkers for localizing epileptogenic brain tissue. Previous studies have revealed that HFOs that present concurrence with interictal epileptic discharges (IEDs) better delineate epileptogenic brain tissue, particularly for epilepsy patients with multitype interictal discharges. However, the analysis of noninvasively recorded epileptic HFOs involves many complex procedures, such as data preprocessing, detection and source localization, impeding the translation of this approach to clinical practice.To address these problems, we developed a graphical user interface (GUI)-based pipeline called EMHapp, which can be used for the automatic detection, source localization and visualization of HFO events concurring with IEDs in magnetoencephalography (MEG) signals by using a beamformer-based virtual sensor (VS) technique. An improved VS reconstruction method was developed to enhance the amplitudes of both HFO and IED VS signals. To test the capability of our pipeline, we collected MEG data from 11 complex focal epilepsy patients with surgical resections or seizure onset zones (SOZs) that were identified by intracranial electroencephalography.Our results showed that the HFO sources of eight patients were concordant with their resection margins or SOZs. Our proposed VS signal reconstruction approach achieved an 83.2% improvement regarding the number of detected HFO events and a 17.3% improvement in terms of the spatial overlaps between the HFO sources and the resection margins or SOZs in comparison with conventional VS reconstruction approaches.EMHapp is the first GUI-based pipeline for the analysis of epileptic magnetoencephalographic HFOs, which conveniently obtains HFO source locations using clinical data and enables direct translation to clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1741-2552/ac9259 | DOI Listing |
JMIR Res Protoc
January 2025
Department of Public Health Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia.
Background: Postpartum depression remains a significant concern, posing substantial challenges to maternal well-being, infant health, and the mother-infant bond, particularly in the face of barriers to traditional support and interventions. Previous studies have shown that mobile health (mHealth) interventions offer an accessible means to facilitate early detection and management of mental health issues while at the same time promoting preventive care.
Objective: This study aims to evaluate the effectiveness of the Leveraging on Virtual Engagement for Maternal Understanding & Mood-enhancement (LoVE4MUM) mobile app, which was developed based on the principles of cognitive behavioral therapy and psychoeducation and serves as an intervention to prevent postpartum depression.
Alzheimers Dement
January 2025
Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
Introduction: The automated analysis of connected speech using natural language processing (NLP) emerges as a possible biomarker for Alzheimer's disease (AD). However, it remains unclear which types of connected speech are most sensitive and specific for the detection of AD.
Methods: We applied a language model to automatically transcribed connected speech from 114 Flemish-speaking individuals to first distinguish early AD patients from amyloid negative cognitively unimpaired (CU) and then amyloid negative from amyloid positive CU individuals using five different types of connected speech.
Characterizing the movement of biomolecules in single cells quantitatively is essential to understanding fundamental biological mechanisms. RNA fluorescent in situ hybridization (RNA-FISH) is a technique for visualizing RNA in fixed cells using fluorescent probes. Automated processing of the resulting images is essential for large datasets.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China. Electronic address:
Low levels of human norovirus (HuNoV) in food and environment present challenges for nucleic acid detection. This study reported an evaporation-enhanced hydrogel digital reverse transcription loop-mediated isothermal amplification (HD RT-LAMP) with interfacial enzymatic reaction for sensitive HuNoV quantification in food and water. By drying samples on a chamber array chip, HuNoV particles were enriched in situ.
View Article and Find Full Text PDFRadiol Med
January 2025
Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
Purpose: To develop an artificial intelligence (AI) algorithm for automated measurements of spinopelvic parameters on lateral radiographs and compare its performance to multiple experienced radiologists and surgeons.
Methods: On lateral full-spine radiographs of 295 consecutive patients, a two-staged region-based convolutional neural network (R-CNN) was trained to detect anatomical landmarks and calculate thoracic kyphosis (TK), lumbar lordosis (LL), sacral slope (SS), and sagittal vertical axis (SVA). Performance was evaluated on 65 radiographs not used for training, which were measured independently by 6 readers (3 radiologists, 3 surgeons), and the median per measurement was set as the reference standard.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!