Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Flexible implantable electrodes enable months-long stable recording of single-unit signals from rat brains. Despite extensive efforts in the development of flexible probes for brain recording, thus far there are no conclusions on their application in long-term single neuronal recording from the spinal cord which is more mechanically active. To this end, we realized the chronic recording of single-unit signals from the spinal cord of freely-moving rats using flexible carbon nanotube fiber (CNTF) electrodes.We developed flexible CNTF electrodes for intraspinal recording. Continuousimpedance monitoring and histology studies were conducted to explore the critical factors determining the longevity of the recording, as well as to illustrate the evolution of the electrode-tissue interface. Gait analysis were performed to evaluate the biosafety of the chronic intraspinal implantation of the CNTF electrodes.By increasing the insulation thickness of the CNTF electrodes, single-unit signals were continuously recorded from the spinal cord of freely-moving rats without electrode repositioning for 3-4 months. Single neuronal and local field potential activities in response to somatic mechanical stimulation were successfully recorded from the spinal dorsal horns. Histological data demonstrated the ability of the CNTF microelectrodes to form an improved intraspinal interfaces with greatly reduced gliosis compared to their stiff metal counterparts. Continuous impedance monitoring suggested that the longevity of the intraspinal recording with CNTF electrodes was determined by the insulation durability. Gait analysis showed that the chronic presence of the CNTF electrodes caused no noticeable locomotor deficits in rats.It was found that the chronic recording from the spinal cord faces more stringent requirements on the electrode structural durability than recording from the brain. The stable, long-term intraspinal recording provides unique capabilities for studying the physiological functions of the spinal cord relating to motor, sensation, and autonomic control in both health and disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1741-2552/ac9258 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!