A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Selective production of singlet oxygen for harmful cyanobacteria inactivation and cyanotoxins degradation: Efficiency and mechanisms. | LitMetric

Selective production of singlet oxygen for harmful cyanobacteria inactivation and cyanotoxins degradation: Efficiency and mechanisms.

J Hazard Mater

School of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China; School of Engineering, Hangzhou Normal University, 311121 Hangzhou, Zhejiang, China. Electronic address:

Published: January 2023

Knowledge about the impact of singlet oxygen (O) on the characteristics and inactivation of harmful cyanobacterial organic matter is limited. In this study, the feasibility of using an improved single-iron doped graphite-like phase carbon nitride catalyst (FeCN) to activate peroxymonosulfate (PMS) catalytic production of O to inactivate four harmful cyanobacteria was investigated. The inactivation efficiencies at 30 min were 92.77%, 66.84%, 91.06%, and 93.45% for Microcystis aeruginosa (M. aeruginosa), Nodularia harveyana, Oscillatoria sp., and Nostoc sp., respectively. This was associated with adjusting experimental parameters, such as the FeCN and PMS doses and initial pH, to obtain the maximum O yield. The quenching experiment results and electron paramagnetic resonance spectra showed that O generated via the non-radical pathway might play a dominant role in inactivating harmful cyanobacteria and degrading harmful algal toxins (Microcystin-LR and Nodularin). In addition, the FeCN-PMS system not only effectively destroyed the integrity of harmful cyanobacterial cells but also effectively degraded cyanobacterial toxins, thereby preventing severe secondary contamination by cell rupture. A possible removal mechanism was proposed. This reveals the potential of O to simultaneously inactivate harmful cyanobacteria and degrade harmful cyanobacterial toxins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2022.129940DOI Listing

Publication Analysis

Top Keywords

harmful cyanobacteria
16
harmful cyanobacterial
12
singlet oxygen
8
harmful
8
inactivate harmful
8
cyanobacterial toxins
8
selective production
4
production singlet
4
oxygen harmful
4
cyanobacteria
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!