Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Knowledge about the impact of singlet oxygen (O) on the characteristics and inactivation of harmful cyanobacterial organic matter is limited. In this study, the feasibility of using an improved single-iron doped graphite-like phase carbon nitride catalyst (FeCN) to activate peroxymonosulfate (PMS) catalytic production of O to inactivate four harmful cyanobacteria was investigated. The inactivation efficiencies at 30 min were 92.77%, 66.84%, 91.06%, and 93.45% for Microcystis aeruginosa (M. aeruginosa), Nodularia harveyana, Oscillatoria sp., and Nostoc sp., respectively. This was associated with adjusting experimental parameters, such as the FeCN and PMS doses and initial pH, to obtain the maximum O yield. The quenching experiment results and electron paramagnetic resonance spectra showed that O generated via the non-radical pathway might play a dominant role in inactivating harmful cyanobacteria and degrading harmful algal toxins (Microcystin-LR and Nodularin). In addition, the FeCN-PMS system not only effectively destroyed the integrity of harmful cyanobacterial cells but also effectively degraded cyanobacterial toxins, thereby preventing severe secondary contamination by cell rupture. A possible removal mechanism was proposed. This reveals the potential of O to simultaneously inactivate harmful cyanobacteria and degrade harmful cyanobacterial toxins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2022.129940 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!