A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Can we predict the neutral breast position using the gravity-loaded breast position, age, anthropometrics and breast composition data? | LitMetric

Background: This study aimed to identify the predictor variables which account for neutral breast position variance using a full independent variable dataset (the gravity-loaded breast position, age and anthropometrics, and magnetic resonance imaging breast composition data), and a simplified independent variable dataset (magnetic resonance imaging breast composition data excluded).

Methods: Breast position (three-dimensional neutral and static gravity-loaded), age, anthropometrics and magnetic resonance imaging breast composition data were collected for 80 females (bra size 32A to 38D). Correlations between the neutral breast position and the gravity-loaded breast position, age, anthropometrics, and magnetic resonance imaging breast composition data were assessed. Multiple linear and multivariate multiple regression models were utilised to predict neutral breast positions, with mean absolute differences and root mean square error comparing observed and predicted neutral breast positions.

Findings: Breast volume was the only breast composition variable to contribute as a predictor of the neutral breast position. While ≥69% of the variance in the anteroposterior and mediolateral neutral breast positions were accounted for utilising the gravity-loaded breast position, multivariate multiple regression modelling resulted in mean absolute differences >5 mm.

Interpretation: Due to the marginal contribution of breast composition data, a full independent variable dataset may be unnecessary for this application. Additionally, the gravity-loaded breast position, age, anthropometrics, and breast composition data do not successfully predict the neutral breast position. Incorporation of the neutral breast position into breast support garments may enhance bra development. However, further identification of variables which predict the neutral breast position is required.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinbiomech.2022.105760DOI Listing

Publication Analysis

Top Keywords

breast position
52
neutral breast
40
breast composition
32
breast
26
composition data
24
gravity-loaded breast
20
age anthropometrics
20
predict neutral
16
position age
16
magnetic resonance
16

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!