AbstractCoral populations are declining worldwide as a result of increased environmental stressors, including disease. Coral health is greatly dependent on complex interactions between the host animal and its associated microbial symbionts. While relatively understudied, there is growing evidence that the coral microbiome contributes to the health and resilience of corals in a variety of ways, similar to more well-studied systems, such as the human microbiome. Many of these interactions are dependent upon the production and exchange of natural products, including antibacterial compounds, quorum-sensing molecules, internal signaling molecules, nutrients, and so on. While advances in sequencing, culturing, and metabolomic techniques have aided in moving forward the understanding of coral microbiome interactions, current sequence and metabolite databases are lacking, hindering detailed descriptions of the microbes and metabolites involved. This review focuses on the roles of coral microbiomes in health and disease processes of coral hosts, with special attention to the coral metabolome. We discuss what is currently known about the relationship between the coral microbiome and disease, of beneficial microbial products or services, and how the manipulation of the coral microbiome may chemically benefit the coral host against disease. Understanding coral microbiome-metabolome interactions is critical to assisting management, conservation, and restoration strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1086/720971DOI Listing

Publication Analysis

Top Keywords

coral microbiome
16
coral
11
coral health
8
health disease
8
microbiome interactions
8
understanding coral
8
microbiome
6
disease
5
microbiome metabolome
4
metabolome contributions
4

Similar Publications

The bacterial pathogen causes disease in coral species worldwide. The mechanisms of coral colonization, coral microbiome interactions, and virulence factor production are understudied. In other model species, virulence factors like biofilm formation, toxin secretion, and protease production are controlled through a density-dependent communication system called quorum sensing (QS).

View Article and Find Full Text PDF

Biofilm development as a factor driving the degradation of plasticised marine microplastics.

J Hazard Mater

December 2024

College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, QLD 4811, Australia.

Biodegradation of microplastics facilitated by natural marine biofouling is a promising approach for ocean bioremediation. However, implementation requires a comprehensive understanding of how interactions between the marine microbiome and dominant microplastic debris types (e.g.

View Article and Find Full Text PDF

Introduction The use of antibiotics such as oral clindamycin has been effective in treating bacterial infections. However, this medication often comes with significant side effects, particularly those affecting the gastrointestinal (GI) system. This study aims to evaluate the impact of different doses of clindamycin on GI health, specifically examining side effects like stomach upset, diarrhea duration, stomach pain, and recovery time.

View Article and Find Full Text PDF

Over the past decades, human impacts have changed the structure of tropical benthic reef communities towards coral depletion and macroalgal proliferation. However, how these changes have modified chemical and microbial waterscapes is poorly known. Here, we assessed how the experimental removal of macroalgal assemblages influences the chemical and microbial composition of two reef boundary layers, the benthic and the momentum.

View Article and Find Full Text PDF

Evidence for microbially-mediated tradeoffs between growth and defense throughout coral evolution.

Anim Microbiome

January 2025

School of Science, Technology, Engineering, and Mathematics, Division of Biological Sciences, University of Washington Bothell, UWBB-277, Bothell, WA, 98011, USA.

Background: Evolutionary tradeoffs between life-history strategies are important in animal evolution. Because microbes can influence multiple aspects of host physiology, including growth rate and susceptibility to disease or stress, changes in animal-microbial symbioses have the potential to mediate life-history tradeoffs. Scleractinian corals provide a biodiverse, data-rich, and ecologically-relevant host system to explore this idea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!