An efficient 3D point cloud learning architecture, named EfficientLO-Net, for LiDAR odometry is first proposed in this article. In this architecture, the projection-aware representation of the 3D point cloud is proposed to organize the raw 3D point cloud into an ordered data form to achieve efficiency. The Pyramid, Warping, and Cost volume (PWC) structure for the LiDAR odometry task is built to estimate and refine the pose in a coarse-to-fine approach. A projection-aware attentive cost volume is built to directly associate two discrete point clouds and obtain embedding motion patterns. Then, a trainable embedding mask is proposed to weigh the local motion patterns to regress the overall pose and filter outlier points. The trainable pose warp-refinement module is iteratively used with embedding mask optimized hierarchically to make the pose estimation more robust for outliers. The entire architecture is holistically optimized end-to-end to achieve adaptive learning of cost volume and mask, and all operations involving point cloud sampling and grouping are accelerated by projection-aware 3D feature learning methods. The superior performance and effectiveness of our LiDAR odometry architecture are demonstrated on KITTI, M2DGR, and Argoverse datasets. Our method outperforms all recent learning-based methods and even the geometry-based approach, LOAM with mapping optimization, on most sequences of KITTI odometry dataset. We open sourced our codes at: https://github.com/IRMVLab/EfficientLO-Net.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2022.3207015 | DOI Listing |
Sensors (Basel)
December 2024
Electrical, Computer, and Biomedical Engineering, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada.
Autonomous technologies have revolutionized transportation, military operations, and space exploration, necessitating precise localization in environments where traditional GPS-based systems are unreliable or unavailable. While widespread for outdoor localization, GPS systems face limitations in obstructed environments such as dense urban areas, forests, and indoor spaces. Moreover, GPS reliance introduces vulnerabilities to signal disruptions, which can lead to significant operational failures.
View Article and Find Full Text PDFInt J Rob Res
January 2025
Department of Earth and Space Science and Engineering, Lassonde School of Engineering, York University, Toronto, ON, Canada.
The York University Teledyne Optech (YUTO) Mobile Mapping System (MMS) Dataset, encompassing four sequences totaling 20.1 km, was thoroughly assembled through two data collection expeditions on August 12, 2020, and June 21, 2019. Acquisitions were performed using a uniquely equipped vehicle, fortified with a panoramic camera, a tilted LiDAR, a Global Positioning System (GPS), and an Inertial Measurement Unit (IMU), journeying through two strategic locations: the York University Keele Campus in Toronto and the Teledyne Optech headquarters in City of Vaughan, Canada.
View Article and Find Full Text PDFSensors (Basel)
November 2024
School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, China.
Composite robots often encounter difficulties due to changes in illumination, external disturbances, reflective surface effects, and cumulative errors. These challenges significantly hinder their capabilities in environmental perception and the accuracy and reliability of pose estimation. We propose a nonlinear optimization approach to overcome these issues to develop an integrated localization and navigation framework, IIVL-LM (IMU, Infrared, Vision, and LiDAR Fusion for Localization and Mapping).
View Article and Find Full Text PDFSensors (Basel)
October 2024
Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
A stable and robust odometry system is essential for autonomous robot navigation. The 4D millimeter-wave radar, known for its resilience in harsh weather conditions, has attracted considerable attention. As the latest generation of FMCW radar, 4D millimeter-wave radar provides point clouds with both position and Doppler velocity information.
View Article and Find Full Text PDFMicromachines (Basel)
September 2024
Chongqing Huayu Electric Group Co., Ltd., Chongqing 400015, China.
Global Navigation Satellite Systems (GNSSs) frequently encounter challenges in providing reliable navigation and positioning within urban canyons due to signal obstruction. Micro-Electro-Mechanical System (MEMS) Inertial Measurement Units (IMUs) offers an alternative for autonomous navigation, but they are susceptible to accumulating errors. To mitigate these influences, a LiDAR-based Simultaneous Localization and Mapping (SLAM) system is often employed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!