Enteric microbial pathogens, including Escherichia coli, Shigella and Cryptosporidium species, take a particularly heavy toll in low-income countries and are highly associated with infant mortality. We describe here a means to display anti-infective agents on the surface of a probiotic bacterium. Because of their stability and versatility, VHHs, the variable domains of camelid heavy-chain-only antibodies, have potential as components of novel agents to treat or prevent enteric infectious disease. We isolated and characterized VHHs targeting several enteropathogenic E. coli (EPEC) virulence factors: flagellin (Fla), which is required for bacterial motility and promotes colonization; both intimin and the translocated intimin receptor (Tir), which together play key roles in attachment to enterocytes; and E. coli secreted protein A (EspA), an essential component of the type III secretion system (T3SS) that is required for virulence. Several VHHs that recognize Fla, intimin, or Tir blocked function in vitro. The probiotic strain E. coli Nissle 1917 (EcN) produces on the bacterial surface curli fibers, which are the major proteinaceous component of E. coli biofilms. A subset of Fla-, intimin-, or Tir-binding VHHs, as well as VHHs that recognize either a T3SS of another important bacterial pathogen (Shigella flexneri), a soluble bacterial toxin (Shiga toxin or Clostridioides difficile toxin TcdA), or a major surface antigen of an important eukaryotic pathogen (Cryptosporidium parvum) were fused to CsgA, the major curli fiber subunit. Scanning electron micrographs indicated CsgA-VHH fusions were assembled into curli fibers on the EcN surface, and Congo Red binding indicated that these recombinant curli fibers were produced at high levels. Ectopic production of these VHHs conferred on EcN the cognate binding activity and, in the case of anti-Shiga toxin, was neutralizing. Taken together, these results demonstrate the potential of the curli-based pathogen sequestration strategy described herein and contribute to the development of novel VHH-based gut therapeutics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477280 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1010713 | DOI Listing |
ACS Appl Bio Mater
January 2025
Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada.
Threads coated with bioresponsive materials hold promise for innovative wearable diagnostics. However, most thread coatings reported so far cannot be easily customized for different analytes and frequently incorporate non-biodegradable components. Most optically active thread coatings rely on dyes, which often exhibit irreversible responses.
View Article and Find Full Text PDFFree Radic Biol Med
December 2024
Beijing Institute of Radiation Medicine, Beijing, 100850, China. Electronic address:
The scavenging of the excess reactive oxygen species (ROS) induced by radiation is fundamental for radiation protection. However, directly applying antioxidants results in low bioavailability and side effects. Superoxide dismutase (SOD) and catalase (CAT) have high ROS clearance efficiency, whereas their application is limited by the enzyme inactivation, making it difficult to exhibit significant therapeutic effects.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
December 2024
Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
Bacterial biofilms are highly adaptable and resilient to challenges. Nutrient availability can induce changes in biofilm growth, architecture and mechanical properties. Their extracellular matrix plays an important role in achieving biofilm stability under different environmental conditions.
View Article and Find Full Text PDFFront Cell Infect Microbiol
October 2024
Animal Experiment Center, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
Biofilm
December 2024
Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
Biofilm growth facilitates the interaction of uropathogenic (UPEC) with the host environment. The extracellular polymeric substances (EPS) of UPEC biofilms are composed prominently of curli amyloid fiber and cellulose polysaccharide. When the organism is propagated as a colony biofilm on agar media, these macromolecules can generate pronounced macroscopic structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!