Pooled lentiviral CRISPR-Cas9 screens are utilized for assessing the differential sensitivity or resistance of many single-gene knockouts to a compound. Here, we present a scalable approach for high-throughput compound screening by utilizing a small custom library. We describe steps to perform a proof-of-principle chemical screen in non-transformed hTERT RPE-1 TP53 cells with higher coverage and greater timepoint resolution compared to genome-wide screens. This approach can be adapted for use in various cell lines, compounds, and other focused sgRNA libraries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9483651 | PMC |
http://dx.doi.org/10.1016/j.xpro.2022.101675 | DOI Listing |
Biomark Res
December 2024
Department of Medicine and Sciences of Aging, "G. d'Annunzio University" of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy.
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology is a groundbreaking and dynamic molecular tool for DNA and RNA "surgery". CRISPR/Cas9 is the most widely applied system in oncology research. It is a major advancement in genome manipulation due to its precision, efficiency, scalability and versatility compared to previous gene editing methods.
View Article and Find Full Text PDFSci Transl Med
December 2024
Molecular Pharmacology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indianapolis, IN 46285, USA.
Orally bioavailable, synthetic nonpeptide agonists (NPAs) of the glucagon-like peptide-1 receptor (GLP-1R) may offer an effective, scalable pharmacotherapy to address the metabolic disease epidemic. One of the first molecules in the emerging class of GLP-1R NPAs is orforglipron, which is in clinical development for treating type 2 diabetes and obesity. Here, we characterized the pharmacological properties of orforglipron in comparison with peptide-based GLP-1R agonists and other NPAs.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43215, USA.
Microrna
October 2024
Department of Pharmaceutics, Dr. K. N. MODI Institute of Pharmaceutical Education and Research, Modinagar, Ghaziabad, UP, India.
The revolutionary CRISPR/Cas9 gene editing technology holds immense potential for treating genetic diseases and tackling conditions like cancer. However, efficient delivery remains a significant challenge. This is where nanoparticles come into play, emerging as powerful allies in the realm of drug delivery.
View Article and Find Full Text PDFCell
October 2024
Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA; Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA; Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA. Electronic address:
Differential expression analysis of single-cell RNA sequencing (scRNA-seq) data is central for characterizing how experimental factors affect the distribution of gene expression. However, distinguishing between biological and technical sources of cell-cell variability and assessing the statistical significance of quantitative comparisons between cell groups remain challenging. We introduce Memento, a tool for robust and efficient differential analysis of mean expression, variability, and gene correlation from scRNA-seq data, scalable to millions of cells and thousands of samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!