Elucidating the Interfacial Bonding Behavior of Over-Molded Hybrid Fiber Reinforced Polymer Composites: Experiment and Multiscale Numerical Simulation.

ACS Appl Mater Interfaces

Department of Civil and Environmental Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States.

Published: September 2022

This paper implements molecular dynamics (MD) simulation using reactive force field (ReaxFF) to evaluate the atomistic origin of the interfacial behavior in the overmolded hybrid unidirectional continuous carbon fiber low-melt PAEK (CFR-LMPAEK)-short carbon fiber reinforced PEEK (SFR-PEEK) polymer composites. From the MD simulation, it was observed that the interfacial properties improve with increasing maximum processing temperature and injection pressure although such an improving trajectory gets saturated beyond specific limits. The interfacial strength and fracture response of the hybrid polymer system at the interface are also evaluated. The mechanical responses obtained from MD simulation are used as adhesive properties in the macroscale finite element analysis (FEA)-based single lap joint (SLJ) model where the interfacial behavior between the adherends (CFR-LMPAEK and SFR-PEEK) is implemented using cohesive zone model (CZM). The simulated FE results show a good correlation with the SLJ experimental data. Thus, by linking the interfacial properties at the molecular scale to the performance of the interfacial bond at the macroscale, the comprehensive approach presented here opens up various efficient avenues toward atomistically engineered performance tuning in hybrid overmolded fiber-reinforced polymer composites to meet desired large-scale performance needs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c09881DOI Listing

Publication Analysis

Top Keywords

polymer composites
12
fiber reinforced
8
interfacial behavior
8
carbon fiber
8
interfacial properties
8
interfacial
6
elucidating interfacial
4
interfacial bonding
4
bonding behavior
4
behavior over-molded
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!