Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nasopharyngeal carcinoma (NPC) is one of the malignant epithelial tumors with a high metastasis rate. This study aimed to screen potential novel biomarkers involved in NPC metastasis. Microarray data of locoregionally advanced NPC (LA-NPC; GSE103611) were obtained from the database of Gene Expression Omnibus. The differentially expressed genes (DEGs) between LA-NPC tissues with and without distant metastasis after radical treatment were screened. Functional analysis was performed and the protein-protein interaction and submodule were analyzed. The univariate Cox regression analysis was performed to identify prognostic genes in NPC in the validation microarray dataset GSE102349. The drug-gene interactions and key genes were identified. Totally, 107 DEGs were identified. The upregulated DEGs and the key nodes in the protein-protein interaction network were associated with pathways or biological processes related to the cell cycle. Four genes including CD44, B2M, PTPN11, and TRIM74 were associated with disease-free survival in NPC. The drug-gene interaction analysis revealed that upregulated genes CXCL10, CD44, B2M, XRCC5, and RPL11 might be potential druggable genes for patients with LA-NPC metastasis by regulating cell cycle, autophagy, and drug resistance. Upregulated CXCL10, CD44, B2M, XRCC5, and RPL11 might play important roles in LA-NPC metastasis by regulating cell cycle-related pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9439843 | PMC |
http://dx.doi.org/10.1097/MD.0000000000030126 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!