Computationally Guided Redesign of a Heme-free Cytochrome with Native-like Structure and Stability.

Biochemistry

Department of Chemistry and Biochemistry, University of California, La Jolla, San Diego, California 92093, United States.

Published: October 2022

Metals can play key roles in stabilizing protein structures, but ensuring their proper incorporation is a challenge when a metalloprotein is overexpressed in a non-native cellular environment. Here, we have used computational protein design tools to redesign cytochrome (cyt ), which relies on the binding of its heme cofactor to achieve its proper fold, into a stable, heme-free protein. The resulting protein, ApoCyt, features only four mutations and no metal-ligand or covalent bonds, yet displays improved stability over cyt . Mutagenesis studies and X-ray crystal structures reveal that the increase in stability is due to the computationally prescribed mutations, which stabilize the protein fold through a combination of hydrophobic packing interactions, hydrogen bonds, and cation-π interactions. Upon installation of the relevant mutations, ApoCyt is capable of assembling into previously reported, cytochrome-based trimeric and tetrameric assemblies, demonstrating that ApoCyt retains the structure and assembly properties of cyt . The successful design of ApoCyt therefore enables further functional diversification of cytochrome-based assemblies and demonstrates that structural metal cofactors can be replaced by a small number of well-designed, non-covalent interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9949987PMC
http://dx.doi.org/10.1021/acs.biochem.2c00369DOI Listing

Publication Analysis

Top Keywords

protein
5
computationally guided
4
guided redesign
4
redesign heme-free
4
heme-free cytochrome
4
cytochrome native-like
4
native-like structure
4
structure stability
4
stability metals
4
metals play
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!