Physiologically based pharmacokinetic modeling (PBPK) could be used to predict changes in exposure during pregnancy and possibly inform medicine use in pregnancy in situations where there are currently no available clinical data. The Medicines and Healthcare Product Regulatory Agency has been evaluating the available models for a number of medicines cleared by the kidney. Models were evaluated for ceftazidime, cefuroxime, metformin, oseltamivir, and amoxicillin. Because the passive renal process contributes significantly to the renal elimination of these drugs and changes of the process during pregnancy have been implemented in existing pregnancy physiology models, simulations using these models can reasonably describe the pharmacokinetics of ceftazidime changes during pregnancy and appears to generally capture the changes in the other medicines; however, there are insufficient data on drugs solely passively cleared to fully qualify the models. In addition, in many cases, active transport processes are involved in a drug's renal clearance. Knowledge of changes in renal transport functions during pregnancy is emerging, and incorporation of such changes in current physiologically based pharmacokinetic modeling software is a work in progress. Filling this gap is expected to further enhance predictive performance of the models and increase the confidence in predicting pharmacokinetic changes in pregnant women for other renally cleared drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcph.2110 | DOI Listing |
JMIR Ment Health
January 2025
Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea.
Background: Insomnia is a prevalent sleep disorder affecting millions worldwide, with significant impacts on daily functioning and quality of life. While traditionally assessed through subjective measures such as the Insomnia Severity Index (ISI), the advent of wearable technology has enabled continuous, objective sleep monitoring in natural environments. However, the relationship between subjective insomnia severity and objective sleep parameters remains unclear.
View Article and Find Full Text PDFJMIR Form Res
January 2025
Department of Computer Science, University of California, Irvine, Irvine, CA, United States.
Background: Acute pain management is critical in postoperative care, especially in vulnerable patient populations that may be unable to self-report pain levels effectively. Current methods of pain assessment often rely on subjective patient reports or behavioral pain observation tools, which can lead to inconsistencies in pain management. Multimodal pain assessment, integrating physiological and behavioral data, presents an opportunity to create more objective and accurate pain measurement systems.
View Article and Find Full Text PDFPLoS One
January 2025
UCL Institute of Ophthalmology, University College London, London, United Kingdom.
The outer retina (OR) is highly energy demanding. Impaired energy metabolism combined with high demands are expected to cause energy insufficiencies that make the OR susceptible to complex blinding diseases such as age-related macular degeneration (AMD). Here, anatomical, physiological and quantitative molecular data were used to calculate the ATP expenditure of the main energy-consuming processes in three cell types of the OR for the night and two different periods during the day.
View Article and Find Full Text PDFActa Bioeng Biomech
September 2024
Faculty of Computer Science, Kazimierz Wielki University, Bydgoszcz, Poland.
Monitoring and assessing the level of lower limb motor skills using the Biodex System plays an important role in the training of football players and in post-traumatic rehabilitation. The aim of this study was to build and test an artificial intelligence-based model to assess the peak torque of the lower limb extensors and flexors. The model was based on real-world results in three groups: hearing ( = 19) and deaf football players ( = 28) and non-training deaf pupils ( = 46).
View Article and Find Full Text PDFIn the leucine (Leu) biosynthesis pathway, homeostasis is achieved through a feedback regulatory mechanism facilitated by the binding of the end-product Leu at the C-terminal regulatory domain of the first committed enzyme, isopropylmalate synthase (IPMS). In vitro studies have shown that removing the regulatory domain abolishes the feedback regulation on plant IPMS while retaining its catalytic activity. However, the physiological consequences and underlying molecular regulation on Leu flux upon removing the IPMS C-terminal domain remain to be explored in plants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!