Bacterial glycoconjugates, such as cell surface polysaccharides and glycoproteins, play important roles in cellular interactions and survival. Enzymes called nucleotidyltransferases use sugar-1-phosphates and nucleoside triphosphates (NTPs) to produce nucleoside diphosphate sugars (NDP-sugars), which serve as building blocks for most glycoconjugates. Research spanning several decades has shown that some bacterial nucleotidyltransferases have broad substrate tolerance and can be exploited to produce a variety of NDP-sugars . While these enzymes are known to be allosterically regulated by NDP-sugars and their fragments, much work has focused on the effect of active site mutations alone. Here, we show that rational mutations in the allosteric site of the nucleotidyltransferase RmlA lead to expanded substrate tolerance and improvements in catalytic activity that can be explained by subtle changes in quaternary structure and interactions with ligands. These observations will help inform future studies on the directed biosynthesis of diverse bacterial NDP-sugars and downstream glycoconjugates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10322145 | PMC |
http://dx.doi.org/10.1021/acsinfecdis.2c00402 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!