Crystal structure and sugar-binding ability of the C-terminal domain of N-acetylglucosaminyltransferase IV establish a new carbohydrate-binding module family.

Glycobiology

Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.

Published: November 2022

AI Article Synopsis

Article Abstract

N-glycans are modified by glycosyltransferases in the endoplasmic reticulum and Golgi apparatus. N-acetylglucosaminyltransferase IV (GnT-IV) is a Golgi-localized glycosyltransferase that synthesizes complex-type N-glycans in vertebrates. This enzyme attaches N-acetylglucosamine (GlcNAc) to the α-1,3-linked mannose branch of the N-glycan core structure via a β-1,4 linkage. Deficiency of this enzyme is known to cause abnormal cellular functions, making it a vital enzyme for living organisms. However, there has been no report on its 3-dimensional structure to date. Here, we demonstrated that the C-terminal regions (named CBML) of human GnT-IVa and Bombyx mori ortholog have the ability to bind β-N-acetylglucosamine. In addition, we determined the crystal structures of human CBML, B. mori CBML, and its complex with β-GlcNAc at 1.97, 1.47, and 1.15 Å resolutions, respectively, and showed that they adopt a β-sandwich fold, similar to carbohydrate-binding module family 32 (CBM32) proteins. The regions homologous to CBML (≥24% identity) were found in GnT-IV isozymes, GnT-IVb, and GnT-IVc (known as GnT-VI), and the structure of B. mori CBML in complex with β-GlcNAc indicated that the GlcNAc-binding residues were highly conserved among these isozymes. These residues are also conserved with the GlcNAc-binding CBM32 domain of β-N-acetylhexosaminidase NagH from Clostridium perfringens despite the low sequence identity (<20%). Taken together with the phylogenetic analysis, these findings indicate that these CBMLs may be novel CBM family proteins with GlcNAc-binding ability.

Download full-text PDF

Source
http://dx.doi.org/10.1093/glycob/cwac058DOI Listing

Publication Analysis

Top Keywords

carbohydrate-binding module
8
module family
8
mori cbml
8
cbml complex
8
complex β-glcnac
8
cbml
5
crystal structure
4
structure sugar-binding
4
sugar-binding ability
4
ability c-terminal
4

Similar Publications

Cellulose-derived biomaterials offer a sustainable and versatile platform for various applications. Enzymatic engineering of these fibers, particularly using lytic polysaccharide monooxygenases (LPMOs), shows promise due to the ability to introduce functional groups onto cellulose surfaces, potentially enabling further functionalization. However, harnessing LPMOs for fiber engineering remains challenging, partly because controlling the enzymatic reaction is difficult and partly because limited information is available about how LPMOs modify the fibers.

View Article and Find Full Text PDF

In this study, we fully sequenced and analyzed the genome of strain 12219 and identified it as Streptomyces thermocarboxydus. The genome contained a single linear chromosome, 6,950,031 bp in size, with a GC content of 72.21 %.

View Article and Find Full Text PDF

Carbohydrate-binding modules (CBMs) are essential virulence factors in phytopathogens, particularly the extensively studied members from the CBM50 gene family, which are known as lysin motif (LysM) effectors and which play crucial roles in plant-pathogen interactions. However, the function of CBM50 in has yet to be fully studied. In this study, we identified seven CBM50 genes from the genome through complete sequence analysis and functional annotation.

View Article and Find Full Text PDF

Batrachochytrium dendrobatidis (Bd) is responsible for mass extinctions and extirpations of amphibians, mainly driven by the Global Panzootic Lineage (BdGPL). BdGPL isolate JEL423 is a commonly used reference strain in studies exploring the evolution, epidemiology and pathogenicity of chytrid pathogens. These studies have been hampered by the fragmented, erroneous and incomplete B.

View Article and Find Full Text PDF

Structural and functional snapshots of a broad-specificity endoglucanase from Thermogutta terrifontis for biomass saccharification.

Arch Biochem Biophys

December 2024

The Division of Structural Biology, The Nuffield Department of Medicine, University of Oxford, UK; The Rosalind Franklin Institute, Harwell Campus, Didcot, OX11 0QS, UK. Electronic address:

Multifunctionality, processivity, and thermostability are critical for the cost-effective enzymatic saccharification of non-food plant biomass polymers such as β-glucans, celluloses, and xylans to generate biofuels and other valuable products. We present molecular insights into a processive multifunctional endo-1,3-1,4-β-d-glucanase (Tt_End5A) from the hyperthermophilic bacterium Thermogutta terrifontis. Tt_End5A demonstrated activities against a broad spectrum of β-polysaccharides, including barley glucan, lichenan, carboxymethyl cellulose, regenerated amorphous cellulose (RAC), Avicel, xylan, laminarin, mannan, curdlan, xanthan, and various chromogenic substrates at pH 7 and temperatures ranging from 70 to 80°C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!