Background: Colorectal cancer (CRC) is a common malignant tumor worldwide, ranking fourth for incidence. Recently, circular RNAs (circRNAs) have been demonstrated to play a key role in chemotherapy resistance to CRC treatment. Therefore, the role of circ-CD44 is investigated in CRC.
Methods: The expression levels of circ-CD44, miR-330-5p, and ATP binding cassette subfamily C member 1 (ABCC1) were quantified by real-time quantitative polymerase chain reaction (RT-qPCR) assay. The sensitivity of CRC cells to oxaliplatin (OXA) was assessed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazol-3-ium bromide (MTT) assay. Colony-forming experiment was performed to measure the colony-forming ability of CRC cells. The apoptosis, migration, and invasion of CRC cells were determined by flow cytometry and transwell assays. A xenograft experiment was established to clarify the functional role of circ-CD44 silencing in vivo. The interactional relationship among circ-CD44, miR-330-5p, and ABCC1 was confirmed by dual-luciferase reporter and RNA immunoprecipitation assays. The protein expression of ABCC1 was quantified by western blot assay.
Results: Circ-CD44 was obviously upregulated in OXA-resistant colorectal cancer tissues and cells. Loss-of-function experiments revealed that inhibition of circ-CD44 suppressed proliferation, migration, and invasion while it increased OXA sensitivity and apoptosis in OXA-resistant colorectal cancer cells, which was overturned by suppression of miR-330-5p; besides, silencing of circ-CD44 also slowed the tumor growth in vivo. Additionally, overexpression of miR-330-5p inhibited chemotherapy resistance, proliferation, migration, and invasion while it induced apoptosis by targeting ABCC1.
Conclusion: Mechanistically, circ-CD44 functioned as a miRNA sponge for miR-330-5p to upregulate the expression of ABCC1 and regulate chemotherapy resistance in CRC cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.14670/HH-18-516 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!