Introduction: TRIO and CNKSR2 have been demonstrated as the important regulators of RAC1. TRIO is a guanine exchange factor (GEF) and promotes RAC1 activity by accelerating the GDP to GTP exchange. CNKSR2 is a scaffold and adaptor protein and helps to maintain Rac1 GTP/GDP levels at a concentration conducive for dendritic spines formation. Dysregulated RAC1 activity causes synaptic function defects leading to neurodevelopmental disorders (NDDs), which manifest as intellectual disability, learning difficulties, and language disorders.

Case Presentation: Here, we reported two cases with variation from one family and three cases with variation from another family. The family with variation carries a novel heterozygous frameshift variant c.3506delG (p. Gly1169AlafsTer11), where a prenatal case and an apparently asymptomatic carrier mother with only enlarged left lateral ventricles were firstly reported. On the other hand, the family carries a novel hemizygous non-sense variant c.1282C>T (p. Arg428). Concurrently, we identified a novel phenotype never reported in known pathogenic variants, that hydrocephalus and widening lateral ventricle in a 6-year-old male of this family. Furthermore, the genotype-phenotype relationship for , and was explored through a literature review.

Conclusion: The novel variants and unique clinical features of these two pedigrees will help expand our understanding of the genetic and phenotypic profile of - and -related diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9465251PMC
http://dx.doi.org/10.3389/fneur.2022.948877DOI Listing

Publication Analysis

Top Keywords

rac1 activity
8
cases variation
8
variation family
8
carries novel
8
family
5
case report
4
report phenotype
4
phenotype expansion
4
expansion analysis
4
analysis variations
4

Similar Publications

Ginsenoside Ro improves Salmonella Typhimurium-induced colitis through inhibition of the virulence factors SopB and SopE2 via the RAC1/CDC42/ARP2/3 pathway.

FASEB J

December 2024

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.

Salmonella enterica serovar Typhimurium (S. Typhimurium) poses a serious threat to human and animal health, and there is an urgent need to develop new therapeutic agents. In our in vivo study, ginsenoside Ro (Ro) reduced the mortality rate of S.

View Article and Find Full Text PDF

Excitatory synapses and the actin-rich dendritic spines on which they reside are indispensable for information processing and storage in the brain. In the adult hippocampus, excitatory synapses must balance plasticity and stability to support learning and memory. However, the mechanisms governing this balance remain poorly understood.

View Article and Find Full Text PDF

Renal fibrosis is the most important feature of the progression of chronic kidney disease (CKD), and epithelial-mesenchymal transition (EMT) plays an important role in renal fibrosis. Dedicator of cytokinesis protein 2 (Dock2) is involved in the immune system and the development of a variety of fibrotic diseases. However, its specific role in renal fibrosis remains unclear.

View Article and Find Full Text PDF

First separation of commendamide enantiomers.

J Pharm Biomed Anal

December 2024

Institute of Biomolecular Chemistry ICB, CNR, Traversa La Crucca 3, Regione Baldinca, Li Punti, Sassari 07100, Italy. Electronic address:

N-(3-hydroxyacyl)glycines are compounds of remarkable interest due to their biogenic origin and bioactivity and as precursors of the corresponding 3-acyloxy derivatives which represent an important class of bioactive products of bacterial origin. Commendamide [N-(3-hydroxypalmitoyl)glycine] (1) is a gut microbiota-derived bioactive metabolite that is structurally like endogenous long-chain N-acyl-amino acids belonging to the endocannabinoidome, a complex lipid signaling system involved in several aspects of mammalian physiology and pathology. Thanks to this structural similarity, this compound and its analogues, like the N-(3-hydroxymyristoyl)glycine 2, exert a remarkable bioactivity in mammals, for instance, through activation of G-protein-coupled receptors (GPCRs).

View Article and Find Full Text PDF

aPKC/Par3/Par6 polarity complexes regulate podocyte motility and crescent formation in the progression of ANCA-associated vasculitis.

Rheumatology (Oxford)

December 2024

Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.

Objectives: Podocyte bridging may be a key initial event occurring early in crescent formation. This study aims to probe the underlying mechanism of atypical protein kinase C (aPKC)/protease-activated receptor 3(Par3)/Par6 polarity complexes on podocyte motility and crescent formation during the progression of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV).

Methods: The effects of anti-TNF-α monoclonal antibody (mAb) on the crescent formation, localization and expression of aPKC/Par3/Par6 polarity complexes, and activities of small GTPases (Rho/Rac1/Cdc42) were explored in an AAV mouse model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!