Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: To improve the dissolution and bioavailability of the component-based Chinese medicine of leaves (GBCCM), a novel nanocrystalline solid dispersion of GBCCM (GBCCM NC-SD) was first prepared.
Methods: GBCCM mainly containing high pure flavonoid aglycones (FAs) and terpenoid lactones (TLs) was used as the model drug. PVP K30 and SDS were used as solubilizers, combined stabilizers and carriers, and GBCCM NC-SD was prepared by high-pressure homogenization combined with freeze-dryer. Morphology and crystal characteristic of GBCCM NC-SD were analyzed. The dissolution and bioavailability evaluation were performed to investigate the feasibility of GBCCM NC-SD by in vitro dissolution and in vivo integrated pharmacokinetic models.
Results: After homogenizing for 30 cycles under the pressure of 650 bar and freeze-drying, GBCCM NC-SD with uniform quality would be obtained. The particle size, PDI and zeta potential were found to be 335.9 ± 32.8 nm, 0.29 ± 0.02 and -28.4 ± 0.7 mV respectively. Based on charged aerosol detector (CAD) technology, a new chromatographic method for simultaneous detection of eight components in GBCCM was developed. In vitro drug release study showed that the cumulative dissolution of FAs and TLs in GBCCM NC-SD increased from 12.77% to 52.92% (P < 0.01) and 90.91% to 99.21% (P < 0.05) respectively. In comparison with physical mixture of GBCCM and stabilizer (PM), the integrated pharmacokinetics AUC of FAs and TLs in GBCCM NC-SD were significantly increased (P < 0.05), and the T of TLs was also significantly prolonged (P < 0.05).
Conclusion: This study demonstrated that novel GBCCM NC-SD was prepared using Polyvinylpyrrolidone K30 (PVP K30) and Sodium dodecyl sulfate (SDS) as a synergetic stabilizer and also provided a feasible way to improve the dissolution and oral bioavailability of poorly soluble candidate antihypertensive drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9467298 | PMC |
http://dx.doi.org/10.2147/IJN.S379736 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!