High blood pressure (BP), particularly systolic BP (SBP), is the major modifiable risk factor for cardiovascular diseases and related disorders of aging. SBP increases markedly with aging in women such that the prevalence of above-normal SBP (i.e., ≥120 mmHg) in postmenopausal women exceeds rates in age-matched men. This increase in SBP is associated with vascular endothelial dysfunction, mediated by excessive reactive oxygen species-induced oxidative stress and consequent reductions in nitric oxide bioavailability. Moderate-intensity aerobic exercise is a recommended lifestyle strategy for reducing SBP. However, adherence to aerobic exercise guidelines among postmenopausal women is low (<30%) and aerobic exercise does not consistently enhance endothelial function in estrogen-deficient postmenopausal women. High-resistance inspiratory muscle strength training (IMST) is a time-efficient, adherable lifestyle intervention that involves inhaling against resistance through a handheld device (30 breaths/day). Here, we present the protocol for a randomized controlled trial investigating the efficacy of 3 months of high-resistance IMST compared to guideline-based, "standard-of-care" aerobic exercise training for decreasing SBP and improving endothelial function in estrogen-deficient postmenopausal women with above-normal SBP (120-159 mmHg) at baseline (ClinicalTrials.gov Identifier: NCT05000515). A randomized, single-blind, parallel-group design clinical trial will be conducted in 72 (36/group) estrogen-deficient postmenopausal women with above-normal SBP. Participants will complete baseline testing and then be randomized to either 3 months of high-resistance IMST (30 breaths/day, 6 days/week, 75% maximal inspiratory pressure) or moderate-intensity aerobic exercise training (brisk walking 25 min/day, 6 days/week, 40-60% heart rate reserve). Outcome measures will be assessed after 3 months of either intervention. Following end-intervention testing, participants will abstain from their assigned intervention for 6 weeks, after which BP and endothelial function will be assessed to evaluate the potential persistent effects of the intervention on the primary and secondary outcomes. This study is designed to compare the effectiveness of time-efficient, high-resistance IMST to guideline-based aerobic exercise training for lowering SBP and improving endothelial function, and interrogating potential mechanisms of action, in estrogen-deficient postmenopausal women. ClinicalTrials.gov, Identifier: NCT05000515.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9465043PMC
http://dx.doi.org/10.3389/fphys.2022.967478DOI Listing

Publication Analysis

Top Keywords

postmenopausal women
12
aerobic exercise
12
blood pressure
8
sbp
5
inspiratory muscle
4
muscle strength
4
strength training
4
training lowering
4
lowering blood
4
pressure improving
4

Similar Publications

Menopause and obstructive sleep apnea: revealing an independent mediating role of visceral fat beyond body mass index.

BMC Endocr Disord

January 2025

Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.

Background: Menopause is a significant phase in women's health, in which the incidence of obstructive sleep apnea (OSA) is significantly increased. Body fat distribution changes with age and hormone levels in postmenopausal women, but the extent to which changes in body fat distribution affect the occurrence of OSA is unclear.

Methods: This research performed a cross-sectional analysis utilizing data from the 2015-2016 National Health and Nutrition Examination Survey (NHANES).

View Article and Find Full Text PDF

This study investigates the role of flavonoid Icaritin (ICT) in estrogen-deficient ovariectomized (OVX) female mice by activating the Estrogen receptor (ER)/ Phosphatidylinositol 3-kinase (PI3K)/Protein kinase B (Akt) signaling pathway, potentially delaying Parkinson's disease (PD) progression post-castration. Seventy-five 8-week-old C57BL/6J female mice underwent ovariectomy, followed by MPTP (20 mg/kg) injection for 7 days. ICT (20 mg/kg) was administered for 14 days, and motor function was assessed using various behavioral tests.

View Article and Find Full Text PDF

HIV-related mortality has fallen due to scale-up of antiretroviral therapy (ART), so more women living with HIV (WLH) now live to reach menopause. Menopausal estrogen loss causes bone loss, as do HIV and certain ART regimens. However, quantitative bone data from WLH are few in Africa.

View Article and Find Full Text PDF

Human skin is a physical and biochemical barrier that protects the internal body from the external environment. Throughout a person's life, the skin undergoes both intrinsic and extrinsic aging, leading to microscopic and macroscopic changes in its morphology. In addition, the repair processes slow with aging, making the older population more susceptible to skin diseases.

View Article and Find Full Text PDF

Bone mineral density (BMD) levels achieved on osteoporosis treatment are predictive of subsequent fracture risk, and T-score > -2.5 has been proposed as a minimum treatment target for women with osteoporosis. Knowing the likelihood of attaining target T-scores with different medications for different baseline BMD levels can help determine appropriate initial treatment for individual patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!