Cell migration from the olfactory placode (OP) is a well-known phenomenon wherein various cell types, such as gonadotropin-releasing hormone (GnRH)-producing neurons, migrate toward the telencephalon (TEL) during early embryonic development. However, the spatial relationship between early migratory cells and the forebrain is unclear. We examined the early development of whole-mount chick embryos to observe the three-dimensional spatial relationship among OP-derived migratory neurons, olfactory nerve (ON), and TEL. Migratory neurons that express highly polysialylated neural cell adhesion molecule (PSA-NCAM) emerge from the OP and spread over a relatively wide TEL area at the Hamburger and Hamilton (HH) stage 17. Most migratory neurons form a cellular cord between the olfactory pit and rostral TEL within HH18-20. The earliest axons from the olfactory epithelium (OE) were detected along this neuronal cord using DiI-labeling at HH21. Furthermore, a few PSA-NCAM-positive neurons were dispersed around the cellular cord and over the lateral TEL at HH18. A long cellular cord branch extending to the lateral TEL was transiently observed within HH18-24. These results suggest a novel migratory route of OP-derived neurons during the early developmental stages. Following GFP vector introduction into the OP of HH13-15 embryos, labeled neurons were detected around and within the lateral TEL at HH23 and HH27. At HH36, labeled cells were observed in the rostral-lateral TEL, including the olfactory bulb (OB) region. GFP-labeled and calretinin-positive neurons were detected in the OB, suggesting that early OP-derived neurons enter the forebrain and function as interneurons in the OB.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10087695PMC
http://dx.doi.org/10.1002/ar.25080DOI Listing

Publication Analysis

Top Keywords

migratory neurons
12
cellular cord
12
lateral tel
12
neurons
10
chick embryos
8
tel
8
spatial relationship
8
op-derived neurons
8
neurons detected
8
early
6

Similar Publications

In the ventricular-subventricular-zone (V-SVZ) of the postnatal mammalian brain, immature neurons (neuroblasts) are generated from neural stem cells throughout their lifetime. These V-SVZ-derived neuroblasts normally migrate to the olfactory bulb through the rostral migratory stream, differentiate into interneurons, and are integrated into the preexisting olfactory circuit. When the brain is injured, some neuroblasts initiate migration toward the lesion and attempt to repair the damaged neuronal circuitry, but their low regeneration efficiency prevents functional recovery.

View Article and Find Full Text PDF

Degenerative retinal diseases can lead to blindness if left untreated. At present, there are no curative therapies for retinal diseases. Therefore, effective treatment strategies for slowing the progression of retinal diseases and thus improving patients' life standards are urgently needed.

View Article and Find Full Text PDF

De-regulated protein expression contributes to tumor growth and progression in medulloblastoma (MB), the most common malignant brain tumor in children. MB is associated with impaired differentiation of specific neural progenitors, suggesting that the deregulation of proteins involved in neural physiology could contribute to the transformed phenotype in MB. Calsynthenin 1 (CLSTN1) is a neuronal protein involved in cell-cell interaction, vesicle trafficking, and synaptic signaling.

View Article and Find Full Text PDF

Configuration of electrical synapses filters sensory information to drive behavioral choices.

Cell

January 2025

Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06536, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA; Instituto de Neurobiología, Recinto de Ciencias Médicas, Universidad de Puerto Rico, San Juan 00901, Puerto Rico. Electronic address:

Synaptic configurations underpin how the nervous system processes sensory information to produce a behavioral response. This is best understood for chemical synapses, and we know far less about how electrical synaptic configurations modulate sensory information processing and context-specific behaviors. We discovered that innexin 1 (INX-1), a gap junction protein that forms electrical synapses, is required to deploy context-specific behavioral strategies underlying thermotaxis behavior in C.

View Article and Find Full Text PDF

Neurons migrate in a saltatory manner by repeating two distinct steps: extension of the leading process and translocation of the cell body. The former step is critical for determining the migratory route in response to extracellular guidance cues. In the latter step, neurons must generate robust forces that translocate the bulky soma against mechanical barriers of the surrounding three-dimensional environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!