Milestoning simulation of ligand dissociation from the glycogen synthase kinase 3β.

Proteins

Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, Missouri, United States.

Published: February 2023

As drug-binding kinetics has become an important factor to be considered in modern drug discovery, this work evaluated the ability of the Milestoning method in computing the absolute dissociation rate of a ligand from the serine-threonine kinase, glycogen synthase kinase 3β, which is a target for designing drugs to treat diseases such as neurodegenerative disorders and diabetes. We found that the Milestoning method gave good agreement with experiment with modest computational costs. Although the time scale for dissociation lasted tens of seconds, the collective molecular dynamics simulations total less than 1μs. Computing the committor function helped to identify the transition states (TSs), in which the ligand moved substantially away from the binding pocket. The glycine-rich loop with a serine residue attaching to its tips was found to undergo large movement from the bound to the TSs and might play a role in controlling drug-dissociation kinetics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9822852PMC
http://dx.doi.org/10.1002/prot.26423DOI Listing

Publication Analysis

Top Keywords

glycogen synthase
8
synthase kinase
8
kinase 3β
8
milestoning method
8
milestoning simulation
4
simulation ligand
4
ligand dissociation
4
dissociation glycogen
4
3β drug-binding
4
drug-binding kinetics
4

Similar Publications

Cognitive impairment is a significant complication of type 2 diabetes mellitus (T2DM). However, the mechanisms underlying the development of cognitive dysfunction in individuals with T2DM remain elusive. Herein, we discussed the role of Bmal1, a core circadian rhythm-regulating gene, in the process of T2DM-associated cognitive dysfunction.

View Article and Find Full Text PDF

FHIT is a fragile site tumor suppressor that is primarily inactivated upon tobacco smoking. FHIT loss is frequently observed in lung cancer, making it an important biomarker for the development of targeted therapy for lung cancer. Here, we report that inhibitors of glycogen synthase kinase 3 beta (GSK3β) and the homologous recombination DNA repair (HRR) pathway are synthetic lethal with FHIT loss in lung cancer.

View Article and Find Full Text PDF

Serious neurological disorders were associated with cadmium toxicity. Hence, this research aimed to investigate the potential neuroprotective impacts of the ethanolic extracts of Citrus aurantium unripe fruits and leaves (CAF and CAL, respectively) at doses 100 and 200 mg/kg against cadmium chloride-provoked brain dysfunction in rats for 30 consecutive days. HPLC for natural pigment content revealed that CAF implied higher contents of Chlorophyll B, while the CAL has a high yield of chlorophyll A and total carotenoid.

View Article and Find Full Text PDF

Gene model for the ortholog of ( ) in the May 2011 (WUGSC dyak_caf1/DyakCAF1) Genome Assembly (GenBank Accession: GCA_000005975.1 ) of . This ortholog was characterized as part of a developing dataset to study the evolution of the Insulin/insulin-like growth factor signaling pathway (IIS) across the genus using the Genomics Education Partnership gene annotation protocol for Course-based Undergraduate Research Experiences.

View Article and Find Full Text PDF

Unlabelled: Despite the fact that canagliflozin (Cana), a sodium-glucose cotransporter 2 inhibitor, is an anti-diabetic medication with additional effects on the kidney, there is limited experimental data to deliberate its hepato-reno-protective potentiality. Acetaminophen (APAP) overdose remains one of the prominent contributors to hepato-renal damage.

Aim: Our study assessed the novel effect of Cana against APAP-induced toxicities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!