AI Article Synopsis

Article Abstract

Background: Bilirubin, as an essential constituent of cellular signaling pathways, may have a role in cell growth and apoptosis in breast cancer, although the biochemical relevance is still unclear. The purpose of the present study is to recognize the mechanism underlying bilirubin-induced apoptosis in breast cancer cell lines.

Methods And Results: To detect the cell viability, MTT assay was carried out. Apoptosis was assessed by flow cytometry analysis and caspase activities were determined by colorimetric method. The expression of AhR, cyclin D1, cyclin A, p53, p27, Bcl-2, and Bax were examined using real-time PCR. The cell viability has been reduced by bilirubin in a dose-dependent manner and an intrinsic apoptotic response has been occurred that was evidenced by the elevation of caspase-3 and - 9 activities. Bilirubin induced cell arrest in cell-cycle progression, which was associated with the induction of AhR expression, down-regulation of cyclin D1, cyclin A, and upregulation of p53 and p27 expression. Following bilirubin treatment, Bcl-2 was decreased and Bax protein was increased in both cell lines.

Conclusions: To discuss, bilirubin, as a naturally occurring antiproliferative molecule, mediates growth inhibition by induction of cell cycle arrest and apoptosis in MCF-7 and MDA-MB-468 breast cancer cells. It is associated with the suppression of cyclin A, D1, and Bcl-2; induction of p53, p27, and Bax together with the activation of caspase-3 and - 9.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-022-07757-8DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
p53 p27
12
cell
9
bilirubin induced
8
induced cell
8
cell cycle
8
cycle arrest
8
arrest apoptosis
8
cancer cell
8
apoptosis breast
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!