AI Article Synopsis

  • Renal ischemia-reperfusion (IR) injury leads to acute kidney injury (AKI) through increased calcium influx and reactive oxygen species (ROS), causing necrosis and inflammation.
  • Transient receptor potential (TRP) channels, including various types like TRPM, play roles in important cellular functions and are activated during IR injury.
  • TRPM2 channels specifically contribute to renal damage during IR injury; mice lacking TRPM2 show resistance to this type of kidney damage.

Article Abstract

Renal ischemia-reperfusion (IR) injury triggers a cascade of signaling reactions involving an increase in Ca charge and reactive oxygen species (ROS) levels resulting in necrosis, inflammation, apoptosis, and subsequently acute kidney injury (AKI).Transient receptor potential (TRP) channels include an essential class of Ca permeable cation channels, which are segregated into six main channels: the canonical channel (TRPC), the vanilloid-related channel (TRPV), the melastatin-related channel (TRPM), the ankyrin-related channel (TRPA), the mucolipin-related channel (TRPML) and polycystin-related channel (TRPP) or polycystic kidney disease protein (PKD2). TRP channels are involved in adjusting vascular tone, vascular permeability, cell volume, proliferation, secretion, angiogenesis and apoptosis.TRPM channels include eight isoforms (TRPM1-TRPM8) and TRPM2 is the second member of this subfamily that has been expressed in various tissues and organs such as the brain, heart, kidney and lung. Renal TRPM2 channels have an important role in renal IR damage. So that TRPM2 deficient mice are resistant to renal IR injury. TRPM2 channels are triggered by several chemicals including hydrogen peroxide, Ca, and cyclic adenosine diphosphate (ADP) ribose (cADPR) that are generated during AKI caused by IR injury, as well as being implicated in cell death caused by oxidative stress, inflammation, and apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-022-07836-wDOI Listing

Publication Analysis

Top Keywords

channels
8
renal ischemia-reperfusion
8
ischemia-reperfusion injury
8
inflammation apoptosis
8
trp channels
8
channels include
8
trpm2 channels
8
channel
6
trpm2
5
renal
5

Similar Publications

The role of rodent behavioral models of schizophrenia in the ongoing search for novel antipsychotics.

Expert Opin Drug Discov

January 2025

Centro de Investigación en Reproducción Animal Universidad Autónoma de Tlaxcala - CINVESTAV Tlaxcala, Tlaxcala, México.

Introduction: Existing pharmacotherapies for schizophrenia have not progressed beyond targeting dopamine and serotonin neurotransmission. Rodent models of schizophrenia are a necessary tool for elucidating neuropathological processes and testing potential pharmacotherapies, but positive preclinical results in rodent models often do not translate to positive results in the clinic.

Areas Covered: The authors reviewed PubMed for studies that applied rodent behavioral models of schizophrenia to assess the antipsychotic potential of several novel pharmacotherapies currently under investigation.

View Article and Find Full Text PDF

Objective: Aim: This research aims to comprehensively assess the prescribing practices of anti-hypertensive medications in a sample of Iraqi patients with diabetes. Specifically, exploring medication types and classes, adherence to clinical guidelines for managing hypertension in the context of diabetes, and factors influencing prescribing decisions.

Patients And Methods: Materials and Methods: This descriptive cross-sectional retrospective study investigates medication usage in an outpatient clinic in Najaf, Iraq, utilizing systematic sampling.

View Article and Find Full Text PDF

Electroencephalographic signals are obtained by amplifying and recording the brain's spontaneous biological potential using electrodes positioned on the scalp. While proven to help find changes in brain activity with a high temporal resolution, such signals are contaminated by non-stationary and frequent artefacts. A plethora of noise reduction techniques have been developed, achieving remarkable performance.

View Article and Find Full Text PDF

Insight into the Mechanism of d-Glucose Accelerated Exchange in GLUT1 from Molecular Dynamics Simulations.

Biochemistry

January 2025

BHF Centre of Research Excellence, School of Medicine and Life Sciences, King's College London, London SE1 9NH, United Kingdom.

Transmembrane glucose transport, facilitated by glucose transporters (GLUTs), is commonly understood through the simple mobile carrier model (SMCM), which suggests that the central binding site alternates exposure between the inside and outside of the cell, facilitating glucose exchange. An alternative "multisite model" posits that glucose transport is a stochastic diffusion process between ligand-operated gates within the transporter's central channel. This study aims to test these models by conducting atomistic molecular dynamics simulations of multiple glucose molecules docked along the central cleft of GLUT1 at temperatures both above and below the lipid bilayer melting point.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!