Water in nanoscale cavities is ubiquitous and of central importance to everyday phenomena in geology and biology. However, the properties of nanoscale water can be substantially different from those of bulk water, as shown, for example, by the anomalously low dielectric constant of water in nanochannels, near frictionless water flow or the possible existence of a square ice phase. Such properties suggest that nanoconfined water could be engineered for technological applications in nanofluidics, electrolyte materials and water desalination. Unfortunately, challenges in experimentally characterizing water at the nanoscale and the high cost of first-principles simulations have prevented the molecular-level understanding required to control the behaviour of water. Here we combine a range of computational approaches to enable a first-principles-level investigation of a single layer of water within a graphene-like channel. We find that monolayer water exhibits surprisingly rich and diverse phase behaviour that is highly sensitive to temperature and the van der Waals pressure acting within the nanochannel. In addition to multiple molecular phases with melting temperatures varying non-monotonically by more than 400 kelvins with pressure, we predict a hexatic phase, which is an intermediate between a solid and a liquid, and a superionic phase with a high electrical conductivity exceeding that of battery materials. Notably, this suggests that nanoconfinement could be a promising route towards superionic behaviour under easily accessible conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-022-05036-xDOI Listing

Publication Analysis

Top Keywords

water
12
nanoconfined water
8
water nanoscale
8
first-principles phase
4
phase diagram
4
diagram monolayer
4
monolayer nanoconfined
4
water water
4
nanoscale cavities
4
cavities ubiquitous
4

Similar Publications

The recovery of valuable materials from spent lithium-ion batteries (LIBs) has experienced increasing demand in recent years. Current recycling technologies are typically energy-intensive and are often plagued by high operation costs, low processing efficiency, and environmental pollution concerns. In this study, an efficient and environmentally friendly dielectrophoresis (DEP)-based approach is proposed to separate the main components of "black mass" mixtures from LIBs, specifically lithium iron phosphate (LFP) and graphite, based on their polarizability differences.

View Article and Find Full Text PDF

Deciphering pH Mismatching at the Electrified Electrode-Electrolyte Interface towards Understanding Intrinsic Water Molecule Oxidation Kinetics.

Angew Chem Int Ed Engl

January 2025

Research Center for Energy and Environmental Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.

Unveiling the key influencing factors towards electrode/electrolyte interface control is a long-standing challenge for a better understanding of microscopic electrode kinetics, which is indispensable to building up guiding principles for designer electrocatalysts with desirable functionality. Herein, we exemplify the oxygen evolution reaction (OER) via water molecule oxidation with the iridium dioxide electrocatalyst and uncovered the significant mismatching effect of pH between local electrode surface and bulk electrolyte: the intrinsic OER activity under acidic or near-neutral condition was deciphered to be identical by adjusting this pH mismatching. This result indicates that the local pH effect at the electrified solid-liquid interface plays the main role in the "fake" OER performance.

View Article and Find Full Text PDF

Steroids are organic compounds found in all forms of biological life. Besides their structural roles in cell membranes, steroids act as signalling molecules in various physiological processes and are used to treat inflammatory conditions. It has been hypothesised that in addition to their well-characterised genomic and non-genomic pathways, steroids exert their biological or pharmacological activities an indirect, nonreceptor-mediated membrane mechanism caused by steroid-induced changes to the physicochemical properties of cell membranes.

View Article and Find Full Text PDF

A novel aggregation-induced emission (AIE)-based artificial light-harvesting system (LHS) is successfully assembled via the host-guest interaction of bis-naphthylacrylonitrile derivative (BND), water-soluble pillar[5]arene (WP5), and sulforhodamine 101 (SR101). After host-guest assembly, the formed WP5⊃BND complexes spontaneously self-aggregated into WP5⊃BND nanoparticles (donors) and SR101 (acceptors) is introduced into WP5⊃BND to fabricate WP5⊃BND-SR101 LHS. Through the investigation of energy transfer between donors and acceptors, the artificial light-harvesting processes are certified in WP5⊃BND-SR101 LHS and the absolute fluorescence quantum yields (Φ) are significantly improved from 8.

View Article and Find Full Text PDF

High-Density Polyethylene Janus Fibrous Membrane with Enhanced Breathability and Moisture Permeability via PDA Assisted Hydrophilic Modification.

Macromol Rapid Commun

January 2025

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.

Functional fibrous membranes with high mechanical properties are intensively developed for different application fields. In this study, to enhance moisture and air permeability without compromising mechanical strength, a facile float-surface modification strategy is employed to fabricate Janus fibrous membranes with distinct hydrophobicity/hydrophilicity using the high-density polyethylene (HDPE) fibrous membranes. By coating one side of the HDPE fibrous membranes with polydopamine (PDA) and a superhydrophilic polyelectrolyte, the obtained Janus HDPE fibrous membranes demonstrate an excellent water transmission rate (577.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!