The spatial organization of transcriptional control.

Nat Rev Genet

Department of Developmental Biology, Stanford University, Stanford, CA, USA.

Published: January 2023

In animals, the sequences for controlling gene expression do not concentrate just at the transcription start site of genes, but are frequently thousands to millions of base pairs distal to it. The interaction of these sequences with one another and their transcription start sites is regulated by factors that shape the three-dimensional (3D) organization of the genome within the nucleus. Over the past decade, indirect tools exploiting high-throughput DNA sequencing have helped to map this 3D organization, have identified multiple key regulators of its structure and, in the process, have substantially reshaped our view of how 3D genome architecture regulates transcription. Now, new tools for high-throughput super-resolution imaging of chromatin have directly visualized the 3D chromatin organization, settling some debates left unresolved by earlier indirect methods, challenging some earlier models of regulatory specificity and creating hypotheses about the role of chromatin structure in transcriptional regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41576-022-00526-0DOI Listing

Publication Analysis

Top Keywords

transcription start
8
spatial organization
4
organization transcriptional
4
transcriptional control
4
control animals
4
animals sequences
4
sequences controlling
4
controlling gene
4
gene expression
4
expression concentrate
4

Similar Publications

Early embryo development features autonomous, maternally-driven cell divisions that self- organize the multicellular blastula or blastocyst tissue. Maternal control cedes to the zygote starting with the onset of widespread zygotic genome activation (ZGA), which is essential for subsequent cell fate determination and morphogenesis. Intriguingly, although the onset of ZGA is highly regulated at the level of an embryo, it can be non-homogenous and precisely patterned at the single-cell level.

View Article and Find Full Text PDF

Metabolic differences between males and females have been well documented across many species. However, the molecular basis of these differences and how they impact tolerance to nutrient deprivation is still under investigation. In this work, we use to demonstrate that sex-specific differences in fat tissue metabolism are driven, in part, by dimorphic expression of the Integrated Stress Response (ISR) transcription factor, ATF4.

View Article and Find Full Text PDF

Androgens induce renal synthesis of urinary lipocalin-family protein, a potential inter-sexual transmitter in viviparous rockfish.

Biochim Biophys Acta Gen Subj

January 2025

Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan. Electronic address:

In viviparous black rockfish (Sebastes schlegelii), the kidney of reproductive-phase males actively produces lipocalin-type prostaglandin D synthase homolog (LPGDSh) protein, which is presumably involved in intersexual communication when emitted in the urine. The present study was undertaken to discover whether androgens and their nuclear receptors (Ars) are engaged in regulation of renal LPGDSh protein synthesis in black rockfish. Quantitative real-time polymerase chain reaction, in conjunction with immunohistochemistry and highly sensitive enzyme-linked immunosorbent assay, revealed that intra-abdominal administration of a synthetic androgen, 17α-methyltestosterone (MT), to juvenile black rockfish induced their renal expression of LPGDSh transcript and protein.

View Article and Find Full Text PDF

Upstream open reading frames (uORFs) are -regulatory motifs that are predicted to occur in the 5' UTRs of the majority of human protein-coding transcripts and are typically associated with translational repression of the downstream primary open reading frame (pORF). Interference with uORF activity provides a potential mechanism for targeted upregulation of the expression of specific transcripts. It was previously reported that steric block antisense oligonucleotides (ASOs) can bind to and mask uORF start codons to inhibit translation initiation, and thereby disrupt uORF-mediated gene regulation.

View Article and Find Full Text PDF

Optimized methods for scRNA-seq and snRNA-seq of skeletal muscle stored in nucleic acid stabilizing preservative.

Commun Biol

January 2025

Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.

Single cell studies have transformed our understanding of cellular heterogeneity in disease but the need for fresh starting material can be an obstacle, especially in the context of international multicenter studies and archived tissue. We developed a protocol to obtain high-quality cells and nuclei from dissected human skeletal muscle archived in the preservative Allprotect® Tissue Reagent. After fluorescent imaging microscopy confirmed intact nuclei, we performed four protocol variations that compared sequencing metrics between cells and nuclei enriched by either filtering or flow cytometry sorting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!